IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0208823.html
   My bibliography  Save this article

Generalizing soil properties in geographic space: Approaches used and ways forward

Author

Listed:
  • Carmen Cianfrani
  • Aline Buri
  • Eric Verrecchia
  • Antoine Guisan

Abstract

Soil is one of the most complex systems on Earth, functioning at the interface between the lithosphere, biosphere, hydrosphere, and atmosphere and generating a multitude of functions. Moreover, soil constitutes the belowground environment from which plants capture water and nutrients. Despite their great importance, soil properties are often not sufficiently considered in other disciplines, especially in spatial studies of plant distributions. Most soil properties are available as point data and, to be used in spatial analyses, need to be generalised over entire regions (i.e. digital soil mapping). Three categories of statistical approaches can be used for such purpose: geostatistical approaches (GSA), predictive-statistical approaches (PSA), and hybrid approaches (HA) that combine the two previous ones. How then to choose the best approach in a given soil study context? Does it depend on the soil properties to be spatialized, the study area’s characteristics, and/or the availability of soil data? The main aims of this study was to review the use of these three approaches to derive maps of soil properties in relation to the soil parameters, the study area characteristics, and the number of soil samples. We evidenced that the approaches that tend to show the best performance for spatializing soil properties were not necessarily the ones most used in practice. Although PSA was the most widely used, it tended to be outperformed by HA in many cases, but the latter was far less used. However, as the study settings were not always properly described and not all situations were represented in the set of papers analysed, more comparative studies would be needed across a wider range of regions, soil properties, and spatial scales to provide robust conclusions on the best spatialization methods in a specific context.

Suggested Citation

  • Carmen Cianfrani & Aline Buri & Eric Verrecchia & Antoine Guisan, 2018. "Generalizing soil properties in geographic space: Approaches used and ways forward," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0208823
    DOI: 10.1371/journal.pone.0208823
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208823
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0208823&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0208823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mareike Ließ & Johannes Schmidt & Bruno Glaser, 2016. "Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramalingam Kumaraperumal & Sellaperumal Pazhanivelan & Vellingiri Geethalakshmi & Moorthi Nivas Raj & Dhanaraju Muthumanickam & Ragunath Kaliaperumal & Vishnu Shankar & Athira Manikandan Nair & Manoj , 2022. "Comparison of Machine Learning-Based Prediction of Qualitative and Quantitative Digital Soil-Mapping Approaches for Eastern Districts of Tamil Nadu, India," Land, MDPI, vol. 11(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Schmidt & Nik Usmar & Leon Westphal & Max Werner & Stephan Roller & Reinhard Rademacher & Peter Kühn & Lukas Werther & Aline Kottmann, 2023. "Erosion Modelling Indicates a Decrease in Erosion Susceptibility of Historic Ridge and Furrow Fields near Albershausen, Southern Germany," Land, MDPI, vol. 12(3), pages 1-11, February.
    2. Kennedy Were & Syphyline Kebeney & Harrison Churu & James Mumo Mutio & Ruth Njoroge & Denis Mugaa & Boniface Alkamoi & Wilson Ng’etich & Bal Ram Singh, 2023. "Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya," Land, MDPI, vol. 12(4), pages 1-19, April.
    3. Masoud Zolfaghari Nia & Mostafa Moradi & Gholamhosein Moradi & Ruhollah Taghizadeh-Mehrjardi, 2022. "Machine Learning Models for Prediction of Soil Properties in the Riparian Forests," Land, MDPI, vol. 12(1), pages 1-15, December.
    4. Gerald Forkuor & Ozias K L Hounkpatin & Gerhard Welp & Michael Thiel, 2017. "High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0208823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.