IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2279-d1001756.html
   My bibliography  Save this article

Comparison of Machine Learning-Based Prediction of Qualitative and Quantitative Digital Soil-Mapping Approaches for Eastern Districts of Tamil Nadu, India

Author

Listed:
  • Ramalingam Kumaraperumal

    (Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Sellaperumal Pazhanivelan

    (Water Technology Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Vellingiri Geethalakshmi

    (Water Technology Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Moorthi Nivas Raj

    (Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Dhanaraju Muthumanickam

    (Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Ragunath Kaliaperumal

    (Water Technology Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Vishnu Shankar

    (Department of Physical Science and Information Technology, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Athira Manikandan Nair

    (Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Manoj Kumar Yadav

    (Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, New Delhi 110029, India)

  • Thamizh Vendan Tarun Kshatriya

    (Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India)

Abstract

The soil–environmental relationship identified and standardised over the years has expedited the growth of digital soil-mapping techniques; hence, various machine learning algorithms are involved in predicting soil attributes. Therefore, comparing the different machine learning algorithms is essential to provide insights into the performance of the different algorithms in predicting soil information for Indian landscapes. In this study, we compared a suite of six machine learning algorithms to predict quantitative (Cubist, decision tree, k-NN, multiple linear regression, random forest, support vector regression) and qualitative (C5.0, k-NN, multinomial logistic regression, naïve Bayes, random forest, support vector machine) soil information separately at a regional level. The soil information, including the quantitative (pH, OC, and CEC) and qualitative (order, suborder, and great group) attributes, were extracted from the legacy soil maps using stratified random sampling procedures. A total of 4479 soil observations sampled were non-spatially partitioned and intersected with 39 environmental covariate parameters. The predicted maps depicted the complex soil–environmental relationships for the study area at a 30 m spatial resolution. The comparison was facilitated based on the evaluation metrics derived from the test datasets and visual interpretations of the predicted maps. Permutation feature importance analysis was utilised as the model-agnostic interpretation tool to determine the contribution of the covariate parameters to the model’s calibration. The R 2 values for the pH, OC, and CEC ranged from 0.19 to 0.38; 0.04 to 0.13; and 0.14 to 0.40, whereas the RMSE values ranged from 0.75 to 0.86; 0.25 to 0.26; and 8.84 to 10.49, respectively. Irrespective of the algorithms, the overall accuracy percentages for the soil order, suborder, and great group class ranged from 31 to 67; 26 to 65; and 27 to 65, respectively. The tree-based ensemble random forest and rule-based tree models’ (Cubist and C5.0) algorithms efficiently predicted the soil properties spatially. However, the efficiency of the other models can be substantially increased by advocating additional parameterisation measures. The range and scale of the quantitative soil attributes, in addition to the sampling frequency and design, greatly influenced the model’s output. The comprehensive comparison of the algorithms can be utilised to support model selection and mapping at a varied scale. The derived digital soil maps will help farmers and policy makers to adopt precision information for making decisions at the farm level leading to productivity enhancements through the optimal use of nutrients and the sustainability of the agricultural ecosystem, ensuring food security.

Suggested Citation

  • Ramalingam Kumaraperumal & Sellaperumal Pazhanivelan & Vellingiri Geethalakshmi & Moorthi Nivas Raj & Dhanaraju Muthumanickam & Ragunath Kaliaperumal & Vishnu Shankar & Athira Manikandan Nair & Manoj , 2022. "Comparison of Machine Learning-Based Prediction of Qualitative and Quantitative Digital Soil-Mapping Approaches for Eastern Districts of Tamil Nadu, India," Land, MDPI, vol. 11(12), pages 1-26, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2279-:d:1001756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerald Forkuor & Ozias K L Hounkpatin & Gerhard Welp & Michael Thiel, 2017. "High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    2. Ying-Qiang Song & Lian-An Yang & Bo Li & Yue-Ming Hu & An-Le Wang & Wu Zhou & Xue-Sen Cui & Yi-Lun Liu, 2017. "Spatial Prediction of Soil Organic Matter Using a Hybrid Geostatistical Model of an Extreme Learning Machine and Ordinary Kriging," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    3. Kingsley JOHN & Isong Abraham Isong & Ndiye Michael Kebonye & Esther Okon Ayito & Prince Chapman Agyeman & Sunday Marcus Afu, 2020. "Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil," Land, MDPI, vol. 9(12), pages 1-20, December.
    4. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    5. Carmen Cianfrani & Aline Buri & Eric Verrecchia & Antoine Guisan, 2018. "Generalizing soil properties in geographic space: Approaches used and ways forward," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kingsley JOHN & Isong Abraham Isong & Ndiye Michael Kebonye & Esther Okon Ayito & Prince Chapman Agyeman & Sunday Marcus Afu, 2020. "Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil," Land, MDPI, vol. 9(12), pages 1-20, December.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    6. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    7. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    8. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    9. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    10. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    11. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    13. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    14. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    15. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    16. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    17. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    18. Natalia Pardo-Lorente & Anestis Gkanogiannis & Luca Cozzuto & Antoni Gañez Zapater & Lorena Espinar & Ritobrata Ghose & Jacqueline Severino & Laura García-López & Rabia Gül Aydin & Laura Martin & Mari, 2024. "Nuclear localization of MTHFD2 is required for correct mitosis progression," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    19. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    20. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2279-:d:1001756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.