IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0206075.html
   My bibliography  Save this article

ConfeitoGUI: A toolkit for size-sensitive community detection from a correlation network

Author

Listed:
  • Yoshiyuki Ogata
  • Kazuto Mannen
  • Yasuto Kotani
  • Naohiro Kimura
  • Nozomu Sakurai
  • Daisuke Shibata
  • Hideyuki Suzuki

Abstract

Analysis of the large amounts of data accumulated in public databanks can facilitate a more comprehensive understanding of molecular biological processes. Community detection from molecular biological data is paramount in characterizing evolutionary and functional traits of organisms based on gene homology and co-expression, respectively. Although there are common tools to detect local communities from a large network, no toolkit exists for detecting communities that include an element of interest based on size sensitivity, i.e., functionality to obtain local communities with preferred sizes. Herein, we present the ConfeitoGUI toolkit for detecting local communities from a correlation network involving size sensitivity. We compared the toolkit with other common tools for detection in reconstructing communities of microarray experiments of mice. In the results, ConfeitoGUI was observed to be preferable for detecting communities whose sizes are similar to those of original communities compared to other common tools. By changing simple parameters representing sizes for the toolkit, a user can obtain local communities with preferred sizes, which is beneficial for further analysis of members belonging to the communities.

Suggested Citation

  • Yoshiyuki Ogata & Kazuto Mannen & Yasuto Kotani & Naohiro Kimura & Nozomu Sakurai & Daisuke Shibata & Hideyuki Suzuki, 2018. "ConfeitoGUI: A toolkit for size-sensitive community detection from a correlation network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
  • Handle: RePEc:plo:pone00:0206075
    DOI: 10.1371/journal.pone.0206075
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206075
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206075&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0206075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    2. Vivien Marx, 2013. "The big challenges of big data," Nature, Nature, vol. 498(7453), pages 255-260, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhu & Xiantao Liu & Sha He & Jun Shi & Ming Pang, 2015. "Keywords co-occurrence mapping knowledge domain research base on the theory of Big Data in oil and gas industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 249-260, October.
    2. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    3. Stefano Bianchini & Moritz Müller & Pierre Pelletier, 2022. "Artificial intelligence in science: An emerging general method of invention," Post-Print hal-03958025, HAL.
    4. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.
    5. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    6. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    7. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    8. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    9. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    10. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    12. Jun Feng & Zhenting Li & Shizhen Zhang & Chun Bao & Jingxian Fang & Yun Yin & Bolei Chen & Lei Pan & Bing Wang & Yu Zheng, 2023. "A Microimage-Processing-Based Technique for Detecting Qualitative and Quantitative Characteristics of Plant Cells," Agriculture, MDPI, vol. 13(9), pages 1-16, September.
    13. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    14. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    16. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    17. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    18. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    19. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.
    20. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.