IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0205796.html
   My bibliography  Save this article

A computational method for prediction of xylanase enzymes activity in strains of Bacillus subtilis based on pseudo amino acid composition features

Author

Listed:
  • Shohreh Ariaeenejad
  • Maryam Mousivand
  • Parinaz Moradi Dezfouli
  • Maryam Hashemi
  • Kaveh Kavousi
  • Ghasem Hosseini Salekdeh

Abstract

Xylanases are hydrolytic enzymes which based on physicochemical properties, structure, mode of action and substrate specificities are classified into various glycoside hydrolase (GH) families. The purpose of this study is to show that the activity of the members of the xylanase family in the specified pH and temperature conditions can be computationally predicted. The proposed computational regression model was trained and tested with the Pseudo Amino Acid Composition (PseAAC) features extracted solely from the amino acid sequences of enzymes. The xylanases with experimentally determined activities were used as the training dataset to adjust the model parameters. To develop the model, 41 strains of Bacillus subtilis isolated from field soil were screened. From them, 28 strains with the highest halo diameter were selected for further studies. The performance of the model for prediction of xylanase activity was evaluated in three different temperature and pH conditions using stratified cross-validation and jackknife methods. The trained model can be used for determining the activity of newly found xylanases in the specified condition. Such computational models help to scale down the experimental costs and save time by identifying enzymes with appropriate activity for scientific and industrial usage. Our methodology for activity prediction of xylanase enzymes can be potentially applied to the members of the other enzyme families. The availability of sufficient experimental data in specified pH and temperature conditions is a prerequisite for training the learning model and to achieve high accuracy.

Suggested Citation

  • Shohreh Ariaeenejad & Maryam Mousivand & Parinaz Moradi Dezfouli & Maryam Hashemi & Kaveh Kavousi & Ghasem Hosseini Salekdeh, 2018. "A computational method for prediction of xylanase enzymes activity in strains of Bacillus subtilis based on pseudo amino acid composition features," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-16, October.
  • Handle: RePEc:plo:pone00:0205796
    DOI: 10.1371/journal.pone.0205796
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205796
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0205796&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0205796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Chen & Hao Lin & Peng-Mian Feng & Chen Ding & Yong-Chun Zuo & Kuo-Chen Chou, 2012. "iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    2. Martin R Hediger & Luca De Vico & Allan Svendsen & Werner Besenmatter & Jan H Jensen, 2012. "A Computational Methodology to Screen Activities of Enzyme Variants," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    3. Jiangning Song & Hao Tan & Khalid Mahmood & Ruby H P Law & Ashley M Buckle & Geoffrey I Webb & Tatsuya Akutsu & James C Whisstock, 2009. "Prodepth: Predict Residue Depth by Support Vector Regression Approach from Protein Sequences Only," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Xu & Jun Ding & Ling-Yun Wu & Kuo-Chen Chou, 2013. "iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    2. Jiangning Song & Hao Tan & Mingjun Wang & Geoffrey I Webb & Tatsuya Akutsu, 2012. "TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-16, February.
    3. Bin Liu & Longyun Fang & Fule Liu & Xiaolong Wang & Junjie Chen & Kuo-Chen Chou, 2015. "Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    4. Jiangning Song & Hao Tan & Andrew J Perry & Tatsuya Akutsu & Geoffrey I Webb & James C Whisstock & Robert N Pike, 2012. "PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.