IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0200126.html
   My bibliography  Save this article

Estimating epidemiological parameters of a stochastic differential model of HIV dynamics using hierarchical Bayesian statistics

Author

Listed:
  • Renee Dale
  • BeiBei Guo

Abstract

Current estimates of the HIV epidemic indicate a decrease in the incidence of the disease in the undiagnosed subpopulation over the past 10 years. However, a lack of access to care has not been considered when modeling the population. Populations at high risk for contracting HIV are twice as likely to lack access to reliable medical care. In this paper, we consider three contributors to the HIV population dynamics: at-risk population exhaustion, lack of access to care, and usage of anti-retroviral therapy (ART) by diagnosed individuals. An extant problem in the mathematical study of this system is deriving parameter estimates due to a portion of the population being unobserved. We approach this problem by looking at the proportional change in the infected subpopulations. We obtain conservative estimates for the proportional change of the infected subpopulations using hierarchical Bayesian statistics. The estimated proportional change is used to derive epidemic parameter estimates for a system of stochastic differential equations (SDEs). Model fit is quantified to determine the best parametric explanation for the observed dynamics in the infected subpopulations. Parameter estimates derived using these methods produce simulations that closely follow the dynamics observed in the data, as well as values that are generally in agreement with prior understanding of transmission and diagnosis rates. Simulations suggest that the undiagnosed population may be larger than currently estimated without significantly affecting the population dynamics.

Suggested Citation

  • Renee Dale & BeiBei Guo, 2018. "Estimating epidemiological parameters of a stochastic differential model of HIV dynamics using hierarchical Bayesian statistics," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-15, July.
  • Handle: RePEc:plo:pone00:0200126
    DOI: 10.1371/journal.pone.0200126
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200126
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200126&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0200126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A Rasmussen & Erik M Volz & Katia Koelle, 2014. "Phylodynamic Inference for Structured Epidemiological Models," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola De Maio & Chieh-Hsi Wu & Kathleen M O’Reilly & Daniel Wilson, 2015. "New Routes to Phylogeography: A Bayesian Structured Coalescent Approximation," PLOS Genetics, Public Library of Science, vol. 11(8), pages 1-22, August.
    2. J. Voznica & A. Zhukova & V. Boskova & E. Saulnier & F. Lemoine & M. Moslonka-Lefebvre & O. Gascuel, 2022. "Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. David Niyukuri & Trust Chibawara & Peter Suwirakwenda Nyasulu & Wim Delva, 2021. "Inferring HIV Transmission Network Determinants Using Agent-Based Models Calibrated to Multi-Data Sources," Mathematics, MDPI, vol. 9(21), pages 1-33, October.
    4. Emma Saulnier & Olivier Gascuel & Samuel Alizon, 2017. "Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-31, March.
    5. James R. Faulkner & Andrew F. Magee & Beth Shapiro & Vladimir N. Minin, 2020. "Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories," Biometrics, The International Biometric Society, vol. 76(3), pages 677-690, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.