IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0199510.html
   My bibliography  Save this article

The research topic landscape in the literature of social class and inequality

Author

Listed:
  • Liang Guo
  • Shikun Li
  • Ruodan Lu
  • Lei Yin
  • Ariane Gorson-Deruel
  • Lawrence King

Abstract

The literature of social class and inequality is not only diverse and rich in sight, but also complex and fragmented in structure. This article seeks to map the topic landscape of the field and identify salient development trajectories over time. We apply the Latent Dirichlet Allocation topic modeling technique to extract 25 distinct topics from 14,038 SSCI articles published between 1956 to 2017. We classified three topics as “hot”, eight as “stable” and 14 as “cold”, based on each topic’s idiosyncratic temporal trajectory. We also listed the three most cited references and the three most popular journal outlets per topic. Our research suggests that future effort may be devoted to Topics “urban inequalities, corporate social responsibility and public policy in connected capitalism”, “education and social inequality”, “community health intervention and social inequality in multicultural contexts” and “income inequality, labor market reform and industrial relations”.

Suggested Citation

  • Liang Guo & Shikun Li & Ruodan Lu & Lei Yin & Ariane Gorson-Deruel & Lawrence King, 2018. "The research topic landscape in the literature of social class and inequality," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0199510
    DOI: 10.1371/journal.pone.0199510
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199510
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0199510&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0199510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    2. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    3. Ray R. Larson, 2010. "Introduction to Information Retrieval," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(4), pages 852-853, April.
    4. Lucas, Christopher & Nielsen, Richard A. & Roberts, Margaret E. & Stewart, Brandon M. & Storer, Alex & Tingley, Dustin, 2015. "Computer-Assisted Text Analysis for Comparative Politics," Political Analysis, Cambridge University Press, vol. 23(2), pages 254-277, April.
    5. Ray R. Larson, 2010. "Introduction to Information Retrieval," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(4), pages 852-853, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingke Zhu & Hao Fan & Bingbing Xie & Ran Su & Chaofeng Zhou & Jianping He, 2020. "Mapping the Scientific Research on Healthcare Workers’ Occupational Health: A Bibliometric and Social Network Analysis," IJERPH, MDPI, vol. 17(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    2. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    3. Lüdering Jochen & Winker Peter, 2016. "Forward or Backward Looking? The Economic Discourse and the Observed Reality," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(4), pages 483-515, August.
    4. Cho, Yung-Jan & Fu, Pei-Wen & Wu, Chi-Cheng, 2017. "Popular Research Topics in Marketing Journals, 1995–2014," Journal of Interactive Marketing, Elsevier, vol. 40(C), pages 52-72.
    5. Ulrich Fritsche & Johannes Puckelwald, 2018. "Deciphering Professional Forecasters’ Stories - Analyzing a Corpus of Textual Predictions for the German Economy," Macroeconomics and Finance Series 201804, University of Hamburg, Department of Socioeconomics.
    6. Rui Zhang & Jingfei Li & Shaoyu Wu & Dabin Meng, 2016. "Learning to Select Supplier Portfolios for Service Supply Chain," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    7. Andreas Falke & Harald Hruschka, 2022. "Analyzing browsing across websites by machine learning methods," Journal of Business Economics, Springer, vol. 92(5), pages 829-852, July.
    8. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    9. Lüdering, Jochen & Tillmann, Peter, 2020. "Monetary policy on twitter and asset prices: Evidence from computational text analysis," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    10. Javier De la Hoz-M & Mª José Fernández-Gómez & Susana Mendes, 2021. "LDAShiny: An R Package for Exploratory Review of Scientific Literature Based on a Bayesian Probabilistic Model and Machine Learning Tools," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    11. Imran Ali & Devika Kannan, 2022. "Mapping research on healthcare operations and supply chain management: a topic modelling-based literature review," Annals of Operations Research, Springer, vol. 315(1), pages 29-55, August.
    12. Wejdan Alkaldi & Diana Inkpen, 2023. "Text Simplification to Specific Readability Levels," Mathematics, MDPI, vol. 11(9), pages 1-12, April.
    13. Li Li, 2018. "Sentiment-enhanced learning model for online language learning system," Electronic Commerce Research, Springer, vol. 18(1), pages 23-64, March.
    14. Berk Wheelock, Lauren & Pachamanova, Dessislava A., 2022. "Acceptable set topic modeling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 653-673.
    15. Johan de Rooi & Sarah K Nørgaard & Morten A Rasmussen & Klaus Bønnelykke & Hans Bisgaard & Age K Smilde, 2018. "Data representations and -analyses of binary diary data in pursuit of stratifying children based on common childhood illnesses," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    16. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    17. Sandra Wankmüller, 2023. "A comparison of approaches for imbalanced classification problems in the context of retrieving relevant documents for an analysis," Journal of Computational Social Science, Springer, vol. 6(1), pages 91-163, April.
    18. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    19. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    20. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0199510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.