IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0198217.html
   My bibliography  Save this article

Architecture of marine food webs: To be or not be a ‘small-world’

Author

Listed:
  • Tomás Ignacio Marina
  • Leonardo A Saravia
  • Georgina Cordone
  • Vanesa Salinas
  • Santiago R Doyle
  • Fernando R Momo

Abstract

The search for general properties in network structure has been a central issue for food web studies in recent years. One such property is the small-world topology that combines a high clustering and a small distance between nodes of the network. This property may increase food web resilience but make them more sensitive to the extinction of connected species. Food web theory has been developed principally from freshwater and terrestrial ecosystems, largely omitting marine habitats. If theory needs to be modified to accommodate observations from marine ecosystems, based on major differences in several topological characteristics is still on debate. Here we investigated if the small-world topology is a common structural pattern in marine food webs. We developed a novel, simple and statistically rigorous method to examine the largest set of complex marine food webs to date. More than half of the analyzed marine networks exhibited a similar or lower characteristic path length than the random expectation, whereas 39% of the webs presented a significantly higher clustering than its random counterpart. Our method proved that 5 out of 28 networks fulfilled both features of the small-world topology: short path length and high clustering. This work represents the first rigorous analysis of the small-world topology and its associated features in high-quality marine networks. We conclude that such topology is a structural pattern that is not maximized in marine food webs; thus it is probably not an effective model to study robustness, stability and feasibility of marine ecosystems.

Suggested Citation

  • Tomás Ignacio Marina & Leonardo A Saravia & Georgina Cordone & Vanesa Salinas & Santiago R Doyle & Fernando R Momo, 2018. "Architecture of marine food webs: To be or not be a ‘small-world’," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
  • Handle: RePEc:plo:pone00:0198217
    DOI: 10.1371/journal.pone.0198217
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198217
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0198217&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0198217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    2. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    3. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    4. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    5. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Johnson, Jeffrey C. & Luczkovich, Joseph J. & Borgatti, Stephen P. & Snijders, Tom A.B., 2009. "Using social network analysis tools in ecology: Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay," Ecological Modelling, Elsevier, vol. 220(22), pages 3133-3140.
    7. Giacomini, Henrique Corrêa & De Marco, Paulo & Petrere, Miguel, 2009. "Exploring community assembly through an individual-based model for trophic interactions," Ecological Modelling, Elsevier, vol. 220(1), pages 23-39.
    8. Li, Xiaojia & Li, Menghui & Hu, Yanqing & Di, Zengru & Fan, Ying, 2010. "Detecting community structure from coherent oscillation of excitable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 164-170.
    9. Yoshida, Katsuhiko, 2008. "Evolutionary cause of the vulnerability of insular communities," Ecological Modelling, Elsevier, vol. 210(4), pages 403-413.
    10. Fath, Brian D. & Killian, Megan C., 2007. "The relevance of ecological pyramids in community assemblages," Ecological Modelling, Elsevier, vol. 208(2), pages 286-294.
    11. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Weiwei Zhang & Jinde Cao & Dingyuan Chen & Ahmed Alsaedi, 2019. "Out Lag Synchronization of Fractional Order Delayed Complex Networks with Coupling Delay via Pinning Control," Complexity, Hindawi, vol. 2019, pages 1-7, August.
    13. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A data driven network approach to rank countries production diversity and food specialization," Papers 1606.01270, arXiv.org.
    14. Carscallen, W. Mather A. & Romanuk, Tamara N., 2012. "Structure and robustness to species loss in Arctic and Antarctic ice-shelf meta-ecosystem webs," Ecological Modelling, Elsevier, vol. 245(C), pages 208-218.
    15. Fath, Brian D., 2007. "Structural food web regimes," Ecological Modelling, Elsevier, vol. 208(2), pages 391-394.
    16. De Roos, André M. & Schellekens, Tim & Van Kooten, Tobias & Van De Wolfshaar, Karen & Claessen, David & Persson, Lennart, 2008. "Simplifying a physiologically structured population model to a stage-structured biomass model," Theoretical Population Biology, Elsevier, vol. 73(1), pages 47-62.
    17. Richard J. Williams & Neo D. Martinez, 2001. "Stabilization of Chaotic and Non-Permanent Food Web Dynamics," Working Papers 01-07-037, Santa Fe Institute.
    18. Yang, Lixin & Jiang, Jun & Liu, Xiaojun, 2016. "Cluster synchronization in community network with hybrid coupling," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 82-91.
    19. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    20. Alexandridis, Nikolaos & Dambacher, Jeffrey M. & Jean, Fred & Desroy, Nicolas & Bacher, Cédric, 2017. "Qualitative modelling of functional relationships in marine benthic communities," Ecological Modelling, Elsevier, vol. 360(C), pages 300-312.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0198217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.