IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0194791.html
   My bibliography  Save this article

Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression

Author

Listed:
  • Erlend Eindride Fasmer
  • Ole Bernt Fasmer
  • Jan Øystein Berle
  • Ketil J Oedegaard
  • Erik R Hauge

Abstract

Depression and schizophrenia are defined only by their clinical features, and diagnostic separation between them can be difficult. Disturbances in motor activity pattern are central features of both types of disorders. We introduce a new method to analyze time series, called the similarity graph algorithm. Time series of motor activity, obtained from actigraph registrations over 12 days in depressed and schizophrenic patients, were mapped into a graph and we then applied techniques from graph theory to characterize these time series, primarily looking for changes in complexity. The most marked finding was that depressed patients were found to be significantly different from both controls and schizophrenic patients, with evidence of less regularity of the time series, when analyzing the recordings with one hour intervals. These findings support the contention that there are important differences in control systems regulating motor behavior in patients with depression and schizophrenia. The similarity graph algorithm we have described can easily be applied to the study of other types of time series.

Suggested Citation

  • Erlend Eindride Fasmer & Ole Bernt Fasmer & Jan Øystein Berle & Ketil J Oedegaard & Erik R Hauge, 2018. "Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-19, April.
  • Handle: RePEc:plo:pone00:0194791
    DOI: 10.1371/journal.pone.0194791
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194791
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194791&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0194791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karoline Krane-Gartiser & Tone Elise Gjotterud Henriksen & Gunnar Morken & Arne Vaaler & Ole Bernt Fasmer, 2014. "Actigraphic Assessment of Motor Activity in Acutely Admitted Inpatients with Bipolar Disorder," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ole Bernt Fasmer & Erlend Eindride Fasmer & Kristin Mjeldheim & Wenche Førland & Vigdis Elin Giæver Syrstad & Petter Jakobsen & Jan Øystein Berle & Tone E G Henriksen & Zahra Sepasdar & Erik R Hauge &, 2020. "Diurnal variation of motor activity in adult ADHD patients analyzed with methods from graph theory," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    2. Petter Jakobsen & Enrique Garcia-Ceja & Michael Riegler & Lena Antonsen Stabell & Tine Nordgreen & Jim Torresen & Ole Bernt Fasmer & Ketil Joachim Oedegaard, 2020. "Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ole Bernt Fasmer & Erlend Eindride Fasmer & Kristin Mjeldheim & Wenche Førland & Vigdis Elin Giæver Syrstad & Petter Jakobsen & Jan Øystein Berle & Tone E G Henriksen & Zahra Sepasdar & Erik R Hauge &, 2020. "Diurnal variation of motor activity in adult ADHD patients analyzed with methods from graph theory," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    2. Petter Jakobsen & Andrea Stautland & Michael Alexander Riegler & Ulysse Côté-Allard & Zahra Sepasdar & Tine Nordgreen & Jim Torresen & Ole Bernt Fasmer & Ketil Joachim Oedegaard, 2022. "Complexity and variability analyses of motor activity distinguish mood states in bipolar disorder," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.
    3. Andrew Leroux & Junrui Di & Ekaterina Smirnova & Elizabeth J Mcguffey & Quy Cao & Elham Bayatmokhtari & Lucia Tabacu & Vadim Zipunnikov & Jacek K Urbanek & Ciprian Crainiceanu, 2019. "Organizing and Analyzing the Activity Data in NHANES," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 262-287, July.
    4. Petter Jakobsen & Enrique Garcia-Ceja & Michael Riegler & Lena Antonsen Stabell & Tine Nordgreen & Jim Torresen & Ole Bernt Fasmer & Ketil Joachim Oedegaard, 2020. "Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0194791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.