IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189660.html
   My bibliography  Save this article

Theoretical proposal of a low-loss wide-bandwidth silicon photonic crystal fiber for supporting 30 orbital angular momentum modes

Author

Listed:
  • Xun Xu
  • Hongzhi Jia
  • Yu Lei
  • Chunhua Jia
  • Gang Liu
  • Junyu Chai
  • Yanting Peng
  • Jilong Xie

Abstract

We propose a novel four-ring hollow-core silicon photonic crystal fiber (PCF), and we systematically and theoretically investigate the properties of their vector modes. Our PCF can stably support 30 OAM states from the wavelength of 1.5 μm to 2.4 μm, with a large effective refractive index separation of above 1×10−4. The confinement loss is less than 1×10−9 dB/m at the wavelength of 1.55 μm, and the average confinement loss is less than 1×10−8 dB/m from the wavelength of 1.2 μm to 2.4 μm. Moreover, the curve of the dispersion tends to flatten as the wavelength increases. In addition, we comparably investigate PCFs with different hole spacing. This kind of fiber structure will be a potential candidate for high-capacity optical fiber communications and OAM sensing applications using fibers.

Suggested Citation

  • Xun Xu & Hongzhi Jia & Yu Lei & Chunhua Jia & Gang Liu & Junyu Chai & Yanting Peng & Jilong Xie, 2017. "Theoretical proposal of a low-loss wide-bandwidth silicon photonic crystal fiber for supporting 30 orbital angular momentum modes," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-11, December.
  • Handle: RePEc:plo:pone00:0189660
    DOI: 10.1371/journal.pone.0189660
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189660
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189660&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alois Mair & Alipasha Vaziri & Gregor Weihs & Anton Zeilinger, 2001. "Entanglement of the orbital angular momentum states of photons," Nature, Nature, vol. 412(6844), pages 313-316, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Wang, Qing & Wang, Jun & Zhu, Lin & Li, Hong & He, Jun-Rong, 2024. "Rotation controlled mode conversion of quasi-solitons in potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Artem Sinelnik & Shiu Hei Lam & Filippo Coviello & Sebastian Klimmer & Giuseppe Valle & Duk-Yong Choi & Thomas Pertsch & Giancarlo Soavi & Isabelle Staude, 2024. "Ultrafast all-optical second harmonic wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Cafaro, Carlo, 2017. "Geometric algebra and information geometry for quantum computational software," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 154-196.
    6. Jin-Tao Pan & Bo-Han Zhu & Ling-Ling Ma & Wei Chen & Guang-Yang Zhang & Jie Tang & Yuan Liu & Yang Wei & Chao Zhang & Zhi-Han Zhu & Wen-Guo Zhu & Guixin Li & Yan-Qing Lu & Noel A. Clark, 2024. "Nonlinear geometric phase coded ferroelectric nematic fluids for nonlinear soft-matter photonics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Raoul Trines & Holger Schmitz & Martin King & Paul McKenna & Robert Bingham, 2024. "Laser harmonic generation with independent control of frequency and orbital angular momentum," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Sihong Lei & Shiqi Xia & Daohong Song & Jingjun Xu & Hrvoje Buljan & Zhigang Chen, 2024. "Optical vortex ladder via Sisyphus pumping of Pseudospin," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Xiaodong Qiu & Haoxu Guo & Lixiang Chen, 2023. "Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.