IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189401.html
   My bibliography  Save this article

Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information

Author

Listed:
  • Francisco Mauro
  • Vicente J Monleon
  • Hailemariam Temesgen
  • Kevin R Ford

Abstract

Forest inventories require estimates and measures of uncertainty for subpopulations such as management units. These units often times hold a small sample size, so they should be regarded as small areas. When auxiliary information is available, different small area estimation methods have been proposed to obtain reliable estimates for small areas. Unit level empirical best linear unbiased predictors (EBLUP) based on plot or grid unit level models have been studied more thoroughly than area level EBLUPs, where the modelling occurs at the management unit scale. Area level EBLUPs do not require a precise plot positioning and allow the use of variable radius plots, thus reducing fieldwork costs. However, their performance has not been examined thoroughly. We compared unit level and area level EBLUPs, using LiDAR auxiliary information collected for inventorying 98,104 ha coastal coniferous forest. Unit level models were consistently more accurate than area level EBLUPs, and area level EBLUPs were consistently more accurate than field estimates except for large management units that held a large sample. For stand density, volume, basal area, quadratic mean diameter, mean height and Lorey’s height, root mean squared errors (rmses) of estimates obtained using area level EBLUPs were, on average, 1.43, 2.83, 2.09, 1.40, 1.32 and 1.64 times larger than those based on unit level estimates, respectively. Similarly, direct field estimates had rmses that were, on average, 1.37, 1.45, 1.17, 1.17, 1.26, and 1.38 times larger than rmses of area level EBLUPs. Therefore, area level models can lead to substantial gains in accuracy compared to direct estimates, and unit level models lead to very important gains in accuracy compared to area level models, potentially justifying the additional costs of obtaining accurate field plot coordinates.

Suggested Citation

  • Francisco Mauro & Vicente J Monleon & Hailemariam Temesgen & Kevin R Ford, 2017. "Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0189401
    DOI: 10.1371/journal.pone.0189401
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189401
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189401&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Mauro & I. Molina & A. García‐Abril & R. Valbuena & E. Ayuga‐Téllez, 2016. "Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels," Environmetrics, John Wiley & Sons, Ltd., vol. 27(4), pages 225-238, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steen MAGNUSSEN, 2018. "An estimation strategy to protect against over-estimating precision in a LiDAR-based prediction of a stand mean," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(12), pages 497-505.
    2. Steen Magnussen & Johannes Breidenbach, 2020. "Retrieval of among-stand variances from one observation per stand," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(4), pages 133-149.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.