A genetic-algorithm-based remnant grey prediction model for energy demand forecasting
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0185478
Download full text from publisher
References listed on IDEAS
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
- ToksarI, M. Duran, 2009. "Estimating the net electricity energy generation and demand using the ant colony optimization approach: Case of Turkey," Energy Policy, Elsevier, vol. 37(3), pages 1181-1187, March.
- Tutun, Salih & Chou, Chun-An & Canıyılmaz, Erdal, 2015. "A new forecasting framework for volatile behavior in net electricity consumption: A case study in Turkey," Energy, Elsevier, vol. 93(P2), pages 2406-2422.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Juntao Li & Tianxu Cui & Kaiwen Yang & Ruiping Yuan & Liyan He & Mengtao Li, 2021. "Demand Forecasting of E-Commerce Enterprises Based on Horizontal Federated Learning from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
- Yanbin Li & Zhen Li, 2019. "Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the Improved Gravitational Search Algorithm," Energies, MDPI, vol. 12(12), pages 1-20, June.
- Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
- Du, Xiaoyi & Wu, Dongdong & Yan, Yabo, 2023. "Prediction of electricity consumption based on GM(1,Nr) model in Jiangsu province, China," Energy, Elsevier, vol. 262(PA).
- Daren Zhao & Huiwu Zhang & Qing Cao & Zhiyi Wang & Sizhang He & Minghua Zhou & Ruihua Zhang, 2022. "The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-18, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yi-Chung Hu, 2017. "Nonadditive Grey Prediction Using Functional-Link Net for Energy Demand Forecasting," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
- Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
- Colmenar, J.M. & Hidalgo, J.I. & Salcedo-Sanz, S., 2018. "Automatic generation of models for energy demand estimation using Grammatical Evolution," Energy, Elsevier, vol. 164(C), pages 183-193.
- Yi-Chung Hu & Peng Jiang, 2017. "Forecasting energy demand using neural-network-based grey residual modification models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 556-565, May.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Elsland, Rainer & Divrak, Can & Fleiter, Tobias & Wietschel, Martin, 2014. "Turkey’s Strategic Energy Efficiency Plan – An ex ante impact assessment of the residential sector," Energy Policy, Elsevier, vol. 70(C), pages 14-29.
- Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
- Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
- Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
- Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
- Tang, Lei & Wang, Xifan & Wang, Xiuli & Shao, Chengcheng & Liu, Shiyu & Tian, Shijun, 2019. "Long-term electricity consumption forecasting based on expert prediction and fuzzy Bayesian theory," Energy, Elsevier, vol. 167(C), pages 1144-1154.
- Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
- Hossein Iranmanesh & Majid Abdollahzade & Arash Miranian, 2011. "Mid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models," Energies, MDPI, vol. 5(1), pages 1-21, December.
- Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
- He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
- Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Murat Yalçıntaş & Melih Bulu & Murat Küçükvar & Hamidreza Samadi, 2015. "A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul," Sustainability, MDPI, vol. 7(8), pages 1-18, August.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Habeebur Rahman & Iniyan Selvarasan & Jahitha Begum A, 2018. "Short-Term Forecasting of Total Energy Consumption for India-A Black Box Based Approach," Energies, MDPI, vol. 11(12), pages 1-21, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0185478. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.