IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0184316.html
   My bibliography  Save this article

Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts

Author

Listed:
  • Evan P Tanner
  • Monica Papeş
  • R Dwayne Elmore
  • Samuel D Fuhlendorf
  • Craig A Davis

Abstract

Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species’ distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species’ distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel’s quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species’ distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

Suggested Citation

  • Evan P Tanner & Monica Papeş & R Dwayne Elmore & Samuel D Fuhlendorf & Craig A Davis, 2017. "Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-26, September.
  • Handle: RePEc:plo:pone00:0184316
    DOI: 10.1371/journal.pone.0184316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184316
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0184316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0184316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    3. Antoine Guisan, 2014. "Predictive traits to the rescue," Nature Climate Change, Nature, vol. 4(3), pages 175-176, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zhen & Xinyuan Wang & Qingkai Meng & Jingwei Song & Ying Liao & Bo Xiang & Huadong Guo & Chuansheng Liu & Ruixia Yang & Lei Luo, 2018. "Fine-Scale Evaluation of Giant Panda Habitats and Countermeasures against the Future Impacts of Climate Change and Human Disturbance (2015–2050): A Case Study in Ya’an, China," Sustainability, MDPI, vol. 10(4), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    3. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    4. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    5. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    6. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    7. Jorge Velásquez-Tibatá & María H Olaya-Rodríguez & Daniel López-Lozano & César Gutiérrez & Iván González & María C Londoño-Murcia, 2019. "BioModelos: A collaborative online system to map species distributions," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    8. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    9. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    10. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    11. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    12. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    13. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    14. Verboom, Jana & Alkemade, Rob & Klijn, Jan & Metzger, Marc J. & Reijnen, Rien, 2007. "Combining biodiversity modeling with political and economic development scenarios for 25 EU countries," Ecological Economics, Elsevier, vol. 62(2), pages 267-276, April.
    15. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.
    16. Koo, Kyung Ah & Patten, Bernard C. & Teskey, Robert O. & Creed, Irena F., 2014. "Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range," Ecological Modelling, Elsevier, vol. 293(C), pages 81-90.
    17. Andressa Duran & Andreas L S Meyer & Marcio R Pie, 2013. "Climatic Niche Evolution in New World Monkeys (Platyrrhini)," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-6, December.
    18. James I Watling & David N Bucklin & Carolina Speroterra & Laura A Brandt & Frank J Mazzotti & Stephanie S Romañach, 2013. "Validating Predictions from Climate Envelope Models," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
    19. Kaushal, Kevin R. & Navrud, Ståle, 2018. "Global Biodiversity Costs of Climate Change. Improving the damage assessment of species loss in Integrated Assessment Models," Working Paper Series 4-2018, Norwegian University of Life Sciences, School of Economics and Business.
    20. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0184316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.