IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183776.html
   My bibliography  Save this article

Temporal causal inference with stochastic audiovisual sequences

Author

Listed:
  • Shannon M Locke
  • Michael S Landy

Abstract

Integration of sensory information across multiple senses is most likely to occur when signals are spatiotemporally coupled. Yet, recent research on audiovisual rate discrimination indicates that random sequences of light flashes and auditory clicks are integrated optimally regardless of temporal correlation. This may be due to 1) temporal averaging rendering temporal cues less effective; 2) difficulty extracting causal-inference cues from rapidly presented stimuli; or 3) task demands prompting integration without concern for the spatiotemporal relationship between the signals. We conducted a rate-discrimination task (Exp 1), using slower, more random sequences than previous studies, and a separate causal-judgement task (Exp 2). Unisensory and multisensory rate-discrimination thresholds were measured in Exp 1 to assess the effects of temporal correlation and spatial congruence on integration. The performance of most subjects was indistinguishable from optimal for spatiotemporally coupled stimuli, and generally sub-optimal in other conditions, suggesting observers used a multisensory mechanism that is sensitive to both temporal and spatial causal-inference cues. In Exp 2, subjects reported whether temporally uncorrelated (but spatially co-located) sequences were perceived as sharing a common source. A unified percept was affected by click-flash pattern similarity and the maximum temporal offset between individual clicks and flashes, but not on the proportion of synchronous click-flash pairs. A simulation analysis revealed that the stimulus-generation algorithms of previous studies is likely responsible for the observed integration of temporally independent sequences. By combining results from Exps 1 and 2, we found better rate-discrimination performance for sequences that are more likely to be integrated than those that are not. Our results support the principle that multisensory stimuli are optimally integrated when spatiotemporally coupled, and provide insight into the temporal features used for coupling in causal inference.

Suggested Citation

  • Shannon M Locke & Michael S Landy, 2017. "Temporal causal inference with stochastic audiovisual sequences," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-26, September.
  • Handle: RePEc:plo:pone00:0183776
    DOI: 10.1371/journal.pone.0183776
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183776
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183776&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konrad P Körding & Ulrik Beierholm & Wei Ji Ma & Steven Quartz & Joshua B Tenenbaum & Ladan Shams, 2007. "Causal Inference in Multisensory Perception," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amy A Kalia & Paul R Schrater & Gordon E Legge, 2013. "Combining Path Integration and Remembered Landmarks When Navigating without Vision," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    2. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    3. Valeria I Petkova & H Henrik Ehrsson, 2008. "If I Were You: Perceptual Illusion of Body Swapping," PLOS ONE, Public Library of Science, vol. 3(12), pages 1-9, December.
    4. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    5. Patricia Besson & Christophe Bourdin & Lionel Bringoux, 2011. "A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    6. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    7. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    8. Jennifer Laura Lee & Wei Ji Ma, 2021. "Point-estimating observer models for latent cause detection," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-29, October.
    9. Max Berniker & Martin Voss & Konrad Kording, 2010. "Learning Priors for Bayesian Computations in the Nervous System," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    10. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    11. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Jeroen Atsma & Femke Maij & Mathieu Koppen & David E Irwin & W Pieter Medendorp, 2016. "Causal Inference for Spatial Constancy across Saccades," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-20, March.
    13. Peter W Battaglia & Daniel Kersten & Paul R Schrater, 2011. "How Haptic Size Sensations Improve Distance Perception," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-13, June.
    14. Luigi Acerbi & Kalpana Dokka & Dora E Angelaki & Wei Ji Ma, 2018. "Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-38, July.
    15. Tim Rohe & Uta Noppeney, 2015. "Cortical Hierarchies Perform Bayesian Causal Inference in Multisensory Perception," PLOS Biology, Public Library of Science, vol. 13(2), pages 1-18, February.
    16. Máté Aller & Uta Noppeney, 2019. "To integrate or not to integrate: Temporal dynamics of hierarchical Bayesian causal inference," PLOS Biology, Public Library of Science, vol. 17(4), pages 1-31, April.
    17. Ksander N de Winkel & Mikhail Katliar & Heinrich H Bülthoff, 2017. "Causal Inference in Multisensory Heading Estimation," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-20, January.
    18. Sophie Smit & Anina N Rich & Regine Zopf, 2019. "Visual body form and orientation cues do not modulate visuo-tactile temporal integration," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    19. Cory D Bonn & Maria-Eirini Netskou & Arlette Streri & Maria Dolores de Hevia, 2019. "The association of brightness with number/duration in human newborns," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
    20. Christoph Kayser & Ladan Shams, 2015. "Multisensory Causal Inference in the Brain," PLOS Biology, Public Library of Science, vol. 13(2), pages 1-7, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.