IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183585.html
   My bibliography  Save this article

Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments

Author

Listed:
  • Kirsty J Martin
  • Ewan J McGhee
  • Juliana P Schwarz
  • Martin Drysdale
  • Saskia M Brachmann
  • Volker Stucke
  • Owen J Sansom
  • Kurt I Anderson

Abstract

FRET biosensors have proven very useful tools for studying the activation of specific signalling pathways in living cells. Most biosensors designed to date have been predicated on fluorescent protein pairs that were identified by, and for use in, intensity based measurements, however fluorescence lifetime provides a more reliable measurement of FRET. Both the technology and fluorescent proteins available for FRET have moved on dramatically in the last decade. Lifetime imaging systems have become increasingly accessible and user-friendly, and there is an entire field of biology dedicated to refining and adapting different characteristics of existing and novel fluorescent proteins. This growing pool of fluorescent proteins includes the long-lifetime green and cyan fluorescent proteins Clover and mTurquoise2, the red variant mRuby2, and the dark acceptor sREACh. Here, we have tested these donors and acceptors in appropriate combinations against the standard or recommended norms (EGFP and mTFP as donors, mCherry and either Ypet or Venus as acceptors) to determine if they could provide more reliable, reproducible and quantifiable FLIM-FRET data to improve on the dynamic range compared to other donors and breadth of application of biosensor technologies. These tests were performed for comparison on both a wide-field, frequency domain system and a multiphoton, TCSPC time domain FLIM system. Clover proved to be an excellent donor with extended dynamic range in combination with mCherry on both platforms, while mRuby2 showed a high degree of variability and poor FRET efficiencies in all cases. mTFP-Venus was the most consistent cyan-yellow pair between the two FLIM methodologies, but mTurquoise2 has better dynamic range and transfers energy consistently over time to the dark acceptor sRCh. Combination of mTFP-sRCh with Clover-mCherry would allow the simultaneous use of two FLIM-FRET biosensors within one sample by eliminating the crosstalk between the yellow acceptor and green donor emissions.

Suggested Citation

  • Kirsty J Martin & Ewan J McGhee & Juliana P Schwarz & Martin Drysdale & Saskia M Brachmann & Volker Stucke & Owen J Sansom & Kurt I Anderson, 2018. "Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-25, January.
  • Handle: RePEc:plo:pone00:0183585
    DOI: 10.1371/journal.pone.0183585
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183585
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183585&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joachim Goedhart & David von Stetten & Marjolaine Noirclerc-Savoye & Mickaël Lelimousin & Linda Joosen & Mark A. Hink & Laura van Weeren & Theodorus W.J. Gadella & Antoine Royant, 2012. "Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel C. Carrettiero & Maria C. Almeida & Andrew P. Longhini & Jennifer N. Rauch & Dasol Han & Xuemei Zhang & Saeed Najafi & Jason E. Gestwicki & Kenneth S. Kosik, 2022. "Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel A. Valiente-Gabioud & Inés Garteizgogeascoa Suñer & Agata Idziak & Arne Fabritius & Jérome Basquin & Julie Angibaud & U. Valentin Nägerl & Sumeet Pal Singh & Oliver Griesbeck, 2023. "Fluorescent sensors for imaging of interstitial calcium," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Stephanie Trauth & Ilka B Bischofs, 2014. "Ectopic Integration Vectors for Generating Fluorescent Promoter Fusions in Bacillus subtilis with Minimal Dark Noise," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-9, May.
    3. Anna Rubinski & Noam E Ziv, 2015. "Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-29, November.
    4. Dorothy Koveal & Paul C. Rosen & Dylan J. Meyer & Carlos Manlio Díaz-García & Yongcheng Wang & Li-Heng Cai & Peter J. Chou & David A. Weitz & Gary Yellen, 2022. "A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.