IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0182472.html
   My bibliography  Save this article

Genetically defined elevated homocysteine levels do not result in widespread changes of DNA methylation in leukocytes

Author

Listed:
  • Pooja R Mandaviya
  • Roby Joehanes
  • Dylan Aïssi
  • Brigitte Kühnel
  • Riccardo E Marioni
  • Vinh Truong
  • Lisette Stolk
  • Marian Beekman
  • Marc Jan Bonder
  • Lude Franke
  • Christian Gieger
  • Tianxiao Huan
  • M Arfan Ikram
  • Sonja Kunze
  • Liming Liang
  • Jan Lindemans
  • Chunyu Liu
  • Allan F McRae
  • Michael M Mendelson
  • Martina Müller-Nurasyid
  • Annette Peters
  • P Eline Slagboom
  • John M Starr
  • David-Alexandre Trégouët
  • André G Uitterlinden
  • Marleen M J van Greevenbroek
  • Diana van Heemst
  • Maarten van Iterson
  • Philip S Wells
  • Chen Yao
  • Ian J Deary
  • France Gagnon
  • Bastiaan T Heijmans
  • Daniel Levy
  • Pierre-Emmanuel Morange
  • Melanie Waldenberger
  • Sandra G Heil
  • Joyce B J van Meurs
  • on behalf of The CHARGE Consortium Epigenetics group and BIOS Consortium

Abstract

Background: DNA methylation is affected by the activities of the key enzymes and intermediate metabolites of the one-carbon pathway, one of which involves homocysteine. We investigated the effect of the well-known genetic variant associated with mildly elevated homocysteine: MTHFR 677C>T independently and in combination with other homocysteine-associated variants, on genome-wide leukocyte DNA-methylation. Methods: Methylation levels were assessed using Illumina 450k arrays on 9,894 individuals of European ancestry from 12 cohort studies. Linear-mixed-models were used to study the association of additive MTHFR 677C>T and genetic-risk score (GRS) based on 18 homocysteine-associated SNPs, with genome-wide methylation. Results: Meta-analysis revealed that the MTHFR 677C>T variant was associated with 35 CpG sites in cis, and the GRS showed association with 113 CpG sites near the homocysteine-associated variants. Genome-wide analysis revealed that the MTHFR 677C>T variant was associated with 1 trans-CpG (nearest gene ZNF184), while the GRS model showed association with 5 significant trans-CpGs annotated to nearest genes PTF1A, MRPL55, CTDSP2, CRYM and FKBP5. Conclusions: Our results do not show widespread changes in DNA-methylation across the genome, and therefore do not support the hypothesis that mildly elevated homocysteine is associated with widespread methylation changes in leukocytes.

Suggested Citation

  • Pooja R Mandaviya & Roby Joehanes & Dylan Aïssi & Brigitte Kühnel & Riccardo E Marioni & Vinh Truong & Lisette Stolk & Marian Beekman & Marc Jan Bonder & Lude Franke & Christian Gieger & Tianxiao Huan, 2017. "Genetically defined elevated homocysteine levels do not result in widespread changes of DNA methylation in leukocytes," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0182472
    DOI: 10.1371/journal.pone.0182472
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182472
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0182472&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0182472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mevik, Björn-Helge & Wehrens, Ron, 2007. "The pls Package: Principal Component and Partial Least Squares Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 18(i02).
    2. B. Devlin & Kathryn Roeder, 1999. "Genomic Control for Association Studies," Biometrics, The International Biometric Society, vol. 55(4), pages 997-1004, December.
    3. Yakov A Tsepilov & Janina S Ried & Konstantin Strauch & Harald Grallert & Cornelia M van Duijn & Tatiana I Axenovich & Yurii S Aulchenko, 2013. "Development and Application of Genomic Control Methods for Genome-Wide Association Studies Using Non-Additive Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Yu-Fang Pei & Jian Li & Christopher J Papasian & Hong-Wen Deng, 2009. "Univariate/Multivariate Genome-Wide Association Scans Using Data from Families and Unrelated Samples," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-12, August.
    2. Dominic Holland & Oleksandr Frei & Rahul Desikan & Chun-Chieh Fan & Alexey A Shadrin & Olav B Smeland & V S Sundar & Paul Thompson & Ole A Andreassen & Anders M Dale, 2020. "Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-30, May.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    5. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Parsa Akbari & Dragana Vuckovic & Luca Stefanucci & Tao Jiang & Kousik Kundu & Roman Kreuzhuber & Erik L. Bao & Janine H. Collins & Kate Downes & Luigi Grassi & Jose A. Guerrero & Stephen Kaptoge & Ju, 2023. "A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. repec:jss:jstsof:23:i12 is not listed on IDEAS
    8. Gang Zheng & Zhaohai Li & Mitchell H. Gail & Joseph L. Gastwirth, 2010. "Impact of Population Substructure on Trend Tests for Genetic Case–Control Association Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 196-204, March.
    9. Sandosh Padmanabhan & Olle Melander & Toby Johnson & Anna Maria Di Blasio & Wai K Lee & Davide Gentilini & Claire E Hastie & Cristina Menni & Maria Cristina Monti & Christian Delles & Stewart Laing & , 2010. "Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-11, October.
    10. Jakris Eu-ahsunthornwattana & E Nancy Miller & Michaela Fakiola & Wellcome Trust Case Control Consortium 2 & Selma M B Jeronimo & Jenefer M Blackwell & Heather J Cordell, 2014. "Comparison of Methods to Account for Relatedness in Genome-Wide Association Studies with Family-Based Data," PLOS Genetics, Public Library of Science, vol. 10(7), pages 1-20, July.
    11. Jianzhong Ma & Christopher I Amos, 2010. "Theoretical Formulation of Principal Components Analysis to Detect and Correct for Population Stratification," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-14, September.
    12. Claire L Simpson & Robert Wojciechowski & Konrad Oexle & Federico Murgia & Laura Portas & Xiaohui Li & Virginie J M Verhoeven & Veronique Vitart & Maria Schache & S Mohsen Hosseini & Pirro G Hysi & Le, 2014. "Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-19, September.
    13. Elton Mammadov & Michael Denk & Frank Riedel & Cezary Kaźmierowski & Karolina Lewinska & Remigiusz Łukowiak & Witold Grzebisz & Amrakh I. Mamedov & Cornelia Glaesser, 2022. "Determination of Mehlich 3 Extractable Elements with Visible and Near Infrared Spectroscopy in a Mountainous Agricultural Land, the Caucasus Mountains," Land, MDPI, vol. 11(3), pages 1-24, March.
    14. Giacomo Crucil & Fabio Castaldi & Emilien Aldana-Jague & Bas van Wesemael & Andy Macdonald & Kristof Van Oost, 2019. "Assessing the Performance of UAS-Compatible Multispectral and Hyperspectral Sensors for Soil Organic Carbon Prediction," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    15. Matthieu Bouaziz & Christophe Ambroise & Mickael Guedj, 2011. "Accounting for Population Stratification in Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-13, December.
    16. Aditi Shendre & Howard W Wiener & Marguerite R Irvin & Bradley E Aouizerat & Edgar T Overton & Jason Lazar & Chenglong Liu & Howard N Hodis & Nita A Limdi & Kathleen M Weber & Stephen J Gange & Degui , 2017. "Genome-wide admixture and association study of subclinical atherosclerosis in the Women’s Interagency HIV Study (WIHS)," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-23, December.
    17. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    18. Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
    19. Wang, Linglu & Li, Qizhai & Li, Zhaohai & Zheng, Gang, 2011. "Bayes factors in the presence of population stratification," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 836-841, July.
    20. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    21. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0182472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.