IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0178235.html
   My bibliography  Save this article

Expanded view of ecosystem stability: A grazed grassland case study

Author

Listed:
  • Gidon Eshel
  • Yohay Carmel

Abstract

Analysis of stability under linearized dynamics is central to ecology. We highlight two key limitations of the widely used traditional analysis. First, we note that while stability at fixed points is often the focus, ecological systems may spend less time near fixed points, and more time responding to stochastic environmental forcing by exhibiting wide zero-mean fluctuations about those states. If non-steady, uniquely precarious states along the nonlinear flow are analyzed instead of fixed points, transient growth is possible and indeed common for ecosystems with stable attractive fixed points. Second, we show that in either steady or non-steady states, eigenvalue based analysis can misleadingly suggest stability while eigenvector geometry arising from the non-self-adjointness of the linearized operator can yield large finite-time instabilities. We offer a simple alternative to eigenvalue based stability analysis that naturally and straightforwardly overcome these limitations.

Suggested Citation

  • Gidon Eshel & Yohay Carmel, 2017. "Expanded view of ecosystem stability: A grazed grassland case study," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-17, June.
  • Handle: RePEc:plo:pone00:0178235
    DOI: 10.1371/journal.pone.0178235
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178235
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0178235&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0178235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gui-Quan Sun & Zhen Jin & Yi-Guo Zhao & Quan-Xing Liu & Li Li, 2009. "Spatial Pattern In A Predator-Prey System With Both Self- And Cross-Diffusion," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 71-84.
    2. Thomas Eichner & Rüdiger Pethig, 2006. "An Analytical Foundation of the Ratio-Dependent Predator-Prey Model," Journal of Bioeconomics, Springer, vol. 8(2), pages 121-132, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    2. Thomas Christiaans, 2004. "Population Dynamics in a Microfounded Predator-Prey Model," Volkswirtschaftliche Diskussionsbeiträge 118-04, Universität Siegen, Fakultät Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht.
    3. Thomas Eichner & Rüdiger Pethig, 2007. "Harvesting in an integrated general equilibrium model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 233-252, May.
    4. Xue, Lin, 2012. "Pattern formation in a predator–prey model with spatial effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5987-5996.
    5. Rana, Sourav & Bhattacharya, Sabyasachi & Samanta, Sudip, 2022. "Spatiotemporal dynamics of Leslie–Gower predator–prey model with Allee effect on both populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 32-49.
    6. Waters, Edward K. & Sidhu, Harvinder S. & Sidhu, Leesa A. & Mercer, Geoffry N., 2015. "Extended Lotka–Volterra equations incorporating population heterogeneity: Derivation and analysis of the predator–prey case," Ecological Modelling, Elsevier, vol. 297(C), pages 187-195.
    7. Eric Nævdal, 2008. "Animal rationality and implications for resource management: the case of biological reserves for moose and pine," Journal of Bioeconomics, Springer, vol. 10(2), pages 145-163, August.
    8. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
    9. Francisco Vázquez & Richard Watt, 2011. "Copyright piracy as prey–predator behavior," Journal of Bioeconomics, Springer, vol. 13(1), pages 31-43, April.
    10. Wang, Caiyun & Qi, Suying, 2018. "Spatial dynamics of a predator-prey system with cross diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 55-60.
    11. Guin, Lakshmi Narayan & Djilali, Salih & Chakravarty, Santabrata, 2021. "Cross-diffusion-driven instability in an interacting species model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0178235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.