IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177507.html
   My bibliography  Save this article

Optimal coordinated voltage control in active distribution networks using backtracking search algorithm

Author

Listed:
  • Tengku Juhana Tengku Hashim
  • Azah Mohamed

Abstract

The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.

Suggested Citation

  • Tengku Juhana Tengku Hashim & Azah Mohamed, 2017. "Optimal coordinated voltage control in active distribution networks using backtracking search algorithm," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-20, October.
  • Handle: RePEc:plo:pone00:0177507
    DOI: 10.1371/journal.pone.0177507
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177507
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177507&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    2. Niknam, Taher, 2011. "A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators," Applied Energy, Elsevier, vol. 88(3), pages 778-788, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Piotr Kacejko & Marek Wancerz, 2022. "Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement," Energies, MDPI, vol. 15(6), pages 1-22, March.
    2. Piotr Kacejko & Paweł Pijarski, 2021. "Optimal Voltage Control in MV Network with Distributed Generation," Energies, MDPI, vol. 14(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zare, Mohsen & Niknam, Taher, 2013. "A new multi-objective for environmental and economic management of Volt/Var Control considering renewable energy resources," Energy, Elsevier, vol. 55(C), pages 236-252.
    2. Samimi, Abouzar & Nikzad, Mehdi & Siano, Pierluigi, 2017. "Scenario-based stochastic framework for coupled active and reactive power market in smart distribution systems with demand response programs," Renewable Energy, Elsevier, vol. 109(C), pages 22-40.
    3. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    4. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    5. Biswas (Raha), Syamasree & Mandal, Kamal Krishna & Chakraborty, Niladri, 2016. "Pareto-efficient double auction power transactions for economic reactive power dispatch," Applied Energy, Elsevier, vol. 168(C), pages 610-627.
    6. Manbachi, Moein & Farhangi, Hassan & Palizban, Ali & Arzanpour, Siamak, 2016. "Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification," Applied Energy, Elsevier, vol. 174(C), pages 69-79.
    7. Martinez-Rojas, Marcela & Sumper, Andreas & Gomis-Bellmunt, Oriol & Sudrià-Andreu, Antoni, 2011. "Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search," Applied Energy, Elsevier, vol. 88(12), pages 4678-4686.
    8. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
    9. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    10. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    11. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    12. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    13. Mortazi, Mohammad & Moradi, Ahmad & Khosravi, Mohsen, 2020. "Simultaneous optimization of transformer tap changer and network capacitors to improve the distribution system’s static security considering distributed generation sources," MPRA Paper 109052, University Library of Munich, Germany, revised 01 Jul 2020.
    14. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    15. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    16. Piotr Kacejko & Paweł Pijarski, 2021. "Optimal Voltage Control in MV Network with Distributed Generation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    17. Dashti, Reza & Afsharnia, Saeed & Ghasemi, Hassan, 2010. "A new long term load management model for asset governance of electrical distribution systems," Applied Energy, Elsevier, vol. 87(12), pages 3661-3667, December.
    18. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    19. Ahmet Onen, 2016. "Energy Saving of Conservation Voltage Reduction Based on Load-Voltage Dependency," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    20. Dan Wang & Qing’e Hu & Jia Tang & Hongjie Jia & Yun Li & Shuang Gao & Menghua Fan, 2017. "A Kriging Model Based Optimization of Active Distribution Networks Considering Loss Reduction and Voltage Profile Improvement," Energies, MDPI, vol. 10(12), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.