IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0169664.html
   My bibliography  Save this article

Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight

Author

Listed:
  • Eli Elyas
  • Alex Grimwood
  • Janine T Erler
  • Simon P Robinson
  • Thomas R Cox
  • Daniel Woods
  • Peter Clowes
  • Ramona De Luca
  • Franco Marinozzi
  • Jérémie Fromageau
  • Jeffrey C Bamber

Abstract

Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms.

Suggested Citation

  • Eli Elyas & Alex Grimwood & Janine T Erler & Simon P Robinson & Thomas R Cox & Daniel Woods & Peter Clowes & Ramona De Luca & Franco Marinozzi & Jérémie Fromageau & Jeffrey C Bamber, 2017. "Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-18, January.
  • Handle: RePEc:plo:pone00:0169664
    DOI: 10.1371/journal.pone.0169664
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169664
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169664&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0169664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas R. Cox & Robin M. H. Rumney & Erwin M. Schoof & Lara Perryman & Anette M. Høye & Ankita Agrawal & Demelza Bird & Norain Ab Latif & Hamish Forrest & Holly R. Evans & Iain D. Huggins & Georgina L, 2015. "RETRACTED ARTICLE: The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase," Nature, Nature, vol. 522(7554), pages 106-110, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silje Kjølle & Kenneth Finne & Even Birkeland & Vandana Ardawatia & Ingeborg Winge & Sura Aziz & Gøril Knutsvik & Elisabeth Wik & Joao A. Paulo & Heidrun Vethe & Dimitrios Kleftogiannis & Lars A. Aksl, 2023. "Hypoxia induced responses are reflected in the stromal proteome of breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Qing Li & Xiao-Xin Zhang & Li-Peng Hu & Bo Ni & Dong-Xue Li & Xu Wang & Shu-Heng Jiang & Hui Li & Min-Wei Yang & Yong-Sheng Jiang & Chun-Jie Xu & Xue-Li Zhang & Yan-Li Zhang & Pei-Qi Huang & Qin Yang , 2023. "Coadaptation fostered by the SLIT2-ROBO1 axis facilitates liver metastasis of pancreatic ductal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0169664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.