IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0167664.html
   My bibliography  Save this article

Training to Improve Precision and Accuracy in the Measurement of Fiber Morphology

Author

Listed:
  • Nathan A Hotaling
  • Jun Jeon
  • Mary Beth Wade
  • Derek Luong
  • Xavier-Lewis Palmer
  • Kapil Bharti
  • Carl G Simon Jr

Abstract

An estimated $7.1 billion dollars a year is spent due to irreproducibility in pre-clinical data from errors in data analysis and reporting. Therefore, developing tools to improve measurement comparability is paramount. Recently, an open source tool, DiameterJ, has been deployed for the automated analysis of scanning electron micrographs of fibrous scaffolds designed for tissue engineering applications. DiameterJ performs hundreds to thousands of scaffold fiber diameter measurements from a single micrograph within a few seconds, along with a variety of other scaffold morphological features, which enables a more rigorous and thorough assessment of scaffold properties. Herein, an online, publicly available training module is introduced for educating DiameterJ users on how to effectively analyze scanning electron micrographs of fibers and the large volume of data that a DiameterJ analysis yields. The end goal of this training was to improve user data analysis and reporting to enhance reproducibility of analysis of nanofiber scaffolds. User performance was assessed before and after training to evaluate the effectiveness of the training modules. Users were asked to use DiameterJ to analyze reference micrographs of fibers that had known diameters. The results showed that training improved the accuracy and precision of measurements of fiber diameter in scanning electron micrographs. Training also improved the precision of measurements of pore area, porosity, intersection density, and characteristic fiber length between fiber intersections. These results demonstrate that the DiameterJ training module improves precision and accuracy in fiber morphology measurements, which will lead to enhanced data comparability.

Suggested Citation

  • Nathan A Hotaling & Jun Jeon & Mary Beth Wade & Derek Luong & Xavier-Lewis Palmer & Kapil Bharti & Carl G Simon Jr, 2016. "Training to Improve Precision and Accuracy in the Measurement of Fiber Morphology," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0167664
    DOI: 10.1371/journal.pone.0167664
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167664
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0167664&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0167664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meredith Wadman, 2013. "NIH mulls rules for validating key results," Nature, Nature, vol. 500(7460), pages 14-16, August.
    2. C. Glenn Begley & Lee M. Ellis, 2012. "Raise standards for preclinical cancer research," Nature, Nature, vol. 483(7391), pages 531-533, March.
    3. Francis S. Collins & Lawrence A. Tabak, 2014. "Policy: NIH plans to enhance reproducibility," Nature, Nature, vol. 505(7485), pages 612-613, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tracey L Weissgerber & Vesna D Garovic & Marko Savic & Stacey J Winham & Natasa M Milic, 2016. "From Static to Interactive: Transforming Data Visualization to Improve Transparency," PLOS Biology, Public Library of Science, vol. 14(6), pages 1-8, June.
    2. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    3. Dean A Fergusson & Marc T Avey & Carly C Barron & Mathew Bocock & Kristen E Biefer & Sylvain Boet & Stephane L Bourque & Isidora Conic & Kai Chen & Yuan Yi Dong & Grace M Fox & Ronald B George & Neil , 2019. "Reporting preclinical anesthesia study (REPEAT): Evaluating the quality of reporting in the preclinical anesthesiology literature," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-15, May.
    4. Hussinger, Katrin & Pellens, Maikel, 2019. "Guilt by association: How scientific misconduct harms prior collaborators," Research Policy, Elsevier, vol. 48(2), pages 516-530.
    5. Andreoli-Versbach, Patrick & Mueller-Langer, Frank, 2014. "Open access to data: An ideal professed but not practised," Research Policy, Elsevier, vol. 43(9), pages 1621-1633.
    6. Colin F. Camerer & Anna Dreber & Felix Holzmeister & Teck-Hua Ho & Jürgen Huber & Magnus Johannesson & Michael Kirchler & Gideon Nave & Brian A. Nosek & Thomas Pfeiffer & Adam Altmejd & Nick Buttrick , 2018. "Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015," Nature Human Behaviour, Nature, vol. 2(9), pages 637-644, September.
    7. Stuart G Nicholls & Pauline Quach & Erik von Elm & Astrid Guttmann & David Moher & Irene Petersen & Henrik T Sørensen & Liam Smeeth & Sinéad M Langan & Eric I Benchimol, 2015. "The REporting of Studies Conducted Using Observational Routinely-Collected Health Data (RECORD) Statement: Methods for Arriving at Consensus and Developing Reporting Guidelines," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    8. Peter Harremoës, 2019. "Replication Papers," Publications, MDPI, vol. 7(3), pages 1-8, July.
    9. Bettina Bert & Céline Heinl & Justyna Chmielewska & Franziska Schwarz & Barbara Grune & Andreas Hensel & Matthias Greiner & Gilbert Schönfelder, 2019. "Refining animal research: The Animal Study Registry," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-12, October.
    10. Mark J. McCabe & Frank Mueller-Langer, 2019. "Does Data Disclosure Increase Citations? Empirical Evidence from a Natural Experiment in Leading Economics Journals," JRC Working Papers on Digital Economy 2019-02, Joint Research Centre.
    11. Nathalie Percie du Sert & Viki Hurst & Amrita Ahluwalia & Sabina Alam & Marc T Avey & Monya Baker & William J Browne & Alejandra Clark & Innes C Cuthill & Ulrich Dirnagl & Michael Emerson & Paul Garne, 2020. "The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research," PLOS Biology, Public Library of Science, vol. 18(7), pages 1-12, July.
    12. Hajko, Vladimír, 2017. "The failure of Energy-Economy Nexus: A meta-analysis of 104 studies," Energy, Elsevier, vol. 125(C), pages 771-787.
    13. Oliver Braganza, 2020. "A simple model suggesting economically rational sample-size choice drives irreproducibility," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-19, March.
    14. Stylianos Serghiou & Despina G Contopoulos-Ioannidis & Kevin W Boyack & Nico Riedel & Joshua D Wallach & John P A Ioannidis, 2021. "Assessment of transparency indicators across the biomedical literature: How open is open?," PLOS Biology, Public Library of Science, vol. 19(3), pages 1-26, March.
    15. Marlo M Vernon & E Andrew Balas & Shaher Momani, 2018. "Are university rankings useful to improve research? A systematic review," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-15, March.
    16. Kiri, Bralind & Lacetera, Nicola & Zirulia, Lorenzo, 2018. "Above a swamp: A theory of high-quality scientific production," Research Policy, Elsevier, vol. 47(5), pages 827-839.
    17. Mueller-Langer, Frank & Fecher, Benedikt & Harhoff, Dietmar & Wagner, Gert G., 2019. "Replication studies in economics—How many and which papers are chosen for replication, and why?," Research Policy, Elsevier, vol. 48(1), pages 62-83.
    18. Malika Ihle & Isabel S. Winney & Anna Krystalli & Michael Croucher, 2017. "Striving for transparent and credible research: practical guidelines for behavioral ecologists," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(2), pages 348-354.
    19. Baltussen, Guido & Swinkels, Laurens & Van Vliet, Pim, 2021. "Global factor premiums," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1128-1154.
    20. Owen, P. Dorian, 2018. "Replication to assess statistical adequacy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0167664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.