IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0167545.html
   My bibliography  Save this article

Are Exam Questions Known in Advance? Using Local Dependence to Detect Cheating

Author

Listed:
  • Stefan Zimmermann
  • Dietrich Klusmann
  • Wolfgang Hampe

Abstract

Cheating is a common phenomenon in high stakes admission, licensing and university exams and threatens their validity. To detect if some exam questions had been affected by cheating, we simulated how data would look like if some test takers possessed item preknowledge: Responses to a small number of items were set to correct for 1–10% of test takers. Item difficulty, item discrimination, item fit, and local dependence were computed using an IRT 2PL model. Then changes in these item properties from the non-compromised to the compromised dataset were scrutinized for their sensitivity to item preknowledge. A decline in the discrimination parameter compared with previous test versions and an increase in local item dependence turned out to be the most sensitive indicators of item preknowledge. A multiplicative combination of shifts in item discrimination, item difficulty, and local item dependence detected item preknowledge with a sensitivity of 1.0 and a specificity of .95 if 11 of 80 items were preknown to 10% of the test takers. Cheating groups smaller than 5% of the test takers were not detected reliably. In the discussion, we outline an effective search for items affected by cheating, which would enable faculty staff without IRT knowledge to detect compromised items and exclude them from scoring.

Suggested Citation

  • Stefan Zimmermann & Dietrich Klusmann & Wolfgang Hampe, 2016. "Are Exam Questions Known in Advance? Using Local Dependence to Detect Cheating," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-13, December.
  • Handle: RePEc:plo:pone00:0167545
    DOI: 10.1371/journal.pone.0167545
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167545
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0167545&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0167545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhan Shu & Robert Henson & Richard Luecht, 2013. "Using Deterministic, Gated Item Response Theory Model to Detect Test Cheating due to Item Compromise," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 481-497, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeon-Ah Kang, 2023. "Sequential Generalized Likelihood Ratio Tests for Online Item Monitoring," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 672-696, June.
    2. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    3. Sandip Sinharay, 2017. "Detection of Item Preknowledge Using Likelihood Ratio Test and Score Test," Journal of Educational and Behavioral Statistics, , vol. 42(1), pages 46-68, February.
    4. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    5. Xi Wang & Yang Liu, 2020. "Detecting Compromised Items Using Information From Secure Items," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 667-689, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0167545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.