IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166960.html
   My bibliography  Save this article

Dynamics of Transformation from Segregation to Mixed Wealth Cities

Author

Listed:
  • Anand Sahasranaman
  • Henrik Jeldtoft Jensen

Abstract

We model the dynamics of a variation of the Schelling model for agents described simply by a continuously distributed variable—wealth. Agent movement is not dictated by agent choice as in the classic Schelling model, but by their wealth status. Agents move to neighborhoods where their wealth is not lesser than that of some proportion of their neighbors, the threshold level. As in the case of the classic Schelling model, we find here that wealth-based segregation occurs and persists. However, introducing uncertainty into the decision to move—that is, with some probability, if agents are allowed to move even though the threshold condition is contravened—we find that even for small proportions of such disallowed moves, the dynamics no longer yield segregation but instead sharply transition into a persistent mixed wealth distribution, consistent with empirical findings of Benenson, Hatna, and Or. We investigate the nature of this sharp transformation, and find that it is because of a non-linear relationship between allowed moves (moves where threshold condition is satisfied) and disallowed moves (moves where it is not). For small increases in disallowed moves, there is a rapid corresponding increase in allowed moves (before the rate of increase tapers off and tends to zero), and it is the effect of this non-linearity on the dynamics of the system that causes the rapid transition from a segregated to a mixed wealth state. The contravention of the tolerance condition, sanctioning disallowed moves, could be interpreted as public policy interventions to drive de-segregation. Our finding therefore suggests that it might require limited, but continually implemented, public intervention—just sufficient to enable a small, persistently sustained fraction of disallowed moves so as to trigger the dynamics that drive the transformation from a segregated to mixed equilibrium.

Suggested Citation

  • Anand Sahasranaman & Henrik Jeldtoft Jensen, 2016. "Dynamics of Transformation from Segregation to Mixed Wealth Cities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-12, November.
  • Handle: RePEc:plo:pone00:0166960
    DOI: 10.1371/journal.pone.0166960
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166960
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166960&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Banerjee, Anand & Yakovenko, Victor M. & Di Matteo, T., 2006. "A study of the personal income distribution in Australia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 54-59.
    2. Pancs, Romans & Vriend, Nicolaas J., 2007. "Schelling's spatial proximity model of segregation revisited," Journal of Public Economics, Elsevier, vol. 91(1-2), pages 1-24, February.
    3. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    4. L. Gauvin & J. Vannimenus & J.-P. Nadal, 2009. "Phase diagram of a Schelling segregation model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(2), pages 293-304, July.
    5. D. Stauffer & S. Solomon, 2007. "Ising, Schelling and self-organising segregation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(4), pages 473-479, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anand Sahasranaman & Henrik Jeldtoft Jensen, 2017. "Cooperative dynamics of neighborhood economic status in cities," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    2. Akihisa Okada & Daisuke Inoue & Shihori Koyama & Tadayoshi Matsumori & Hiroaki Yoshida, 2022. "Dynamical cooperation model for mitigating the segregation phase in Schelling’s model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(10), pages 1-10, October.
    3. Shiro Horiuchi, 2021. "Bridging of different sites by bohemians and tourists: analysis by agent-based simulation," Journal of Computational Social Science, Springer, vol. 4(2), pages 567-584, November.
    4. Anand Sahasranaman & Henrik Jeldtoft Jensen, 2018. "Ethnicity and wealth: The dynamics of dual segregation," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guifeng Su & Yi Zhang, 2023. "Significant suppression of segregation in Schelling’s metapopulation model with star-type underlying topology," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(7), pages 1-6, July.
    2. Anand Sahasranaman & Henrik Jeldtoft Jensen, 2018. "Ethnicity and wealth: The dynamics of dual segregation," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
    3. Pablo Medina & Eric Goles & Roberto Zarama & Sergio Rica, 2017. "Self-Organized Societies: On the Sakoda Model of Social Interactions," Complexity, Hindawi, vol. 2017, pages 1-16, January.
    4. Akihisa Okada & Daisuke Inoue & Shihori Koyama & Tadayoshi Matsumori & Hiroaki Yoshida, 2022. "Dynamical cooperation model for mitigating the segregation phase in Schelling’s model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(10), pages 1-10, October.
    5. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    6. Anand Sahasranaman, 2020. "Long term dynamics of poverty transitions in India," Papers 2010.06954, arXiv.org.
    7. Xu, Yan & Wang, Yougui & Tao, Xiaobo & Ližbetinová, Lenka, 2017. "Evidence of Chinese income dynamics and its effects on income scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 143-152.
    8. Sheng Li & Kuo-Liang Chang & Lanlan Wang, 2020. "Racial residential segregation in multiple neighborhood markets: a dynamic sorting study," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(2), pages 363-383, April.
    9. Brzezinski, Michal, 2014. "Do wealth distributions follow power laws? Evidence from ‘rich lists’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 155-162.
    10. Asif, Muhammad & Hussain, Zawar & Asghar, Zahid & Hussain, Muhammad Irfan & Raftab, Mariya & Shah, Said Farooq & Khan, Akbar Ali, 2021. "A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Newby, Michael & Behr, Adam & Feizabadi, Mitra Shojania, 2011. "Investigating the distribution of personal income obtained from the recent U.S. data," Economic Modelling, Elsevier, vol. 28(3), pages 1170-1173, May.
    12. Díaz, Juan D. & Gutiérrez Cubillos, Pablo & Tapia Griñen, Pablo, 2021. "The exponential Pareto model with hidden income processes: Evidence from Chile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    13. Anand Sahasranaman & Henrik Jeldtoft Jensen, 2017. "Cooperative dynamics of neighborhood economic status in cities," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    14. Remuzgo, Lorena & Trueba, Carmen & Sarabia, José María, 2016. "Evolution of the global inequality in greenhouse gases emissions using multidimensional generalized entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 146-157.
    15. Elvis Oltean, 2016. "Modelling income, wealth, and expenditure data by use of Econophysics," Papers 1603.08383, arXiv.org.
    16. Caridi, I. & Pinasco, J.P. & Saintier, N. & Schiaffino, P., 2017. "Characterizing segregation in the Schelling–Voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 125-142.
    17. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & AL-Dhurafi, Nasr Ahmed, 2020. "The power-law distribution for the income of poor households," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    18. Philippe Collard, 2020. "Second-order micromotives and macrobehaviour," Journal of Computational Social Science, Springer, vol. 3(1), pages 209-229, April.
    19. Anand Sahasranaman & Henrik Jeldtoft Jensen, 2021. "Dynamics of reallocation within India’s income distribution," Indian Economic Review, Springer, vol. 56(1), pages 1-23, June.
    20. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.