IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166895.html
   My bibliography  Save this article

Statistical Models for Tornado Climatology: Long and Short-Term Views

Author

Listed:
  • James B Elsner
  • Thomas H Jagger
  • Tyler Fricker

Abstract

This paper estimates regional tornado risk from records of past events using statistical models. First, a spatial model is fit to the tornado counts aggregated in counties with terms that control for changes in observational practices over time. Results provide a long-term view of risk that delineates the main tornado corridors in the United States where the expected annual rate exceeds two tornadoes per 10,000 square km. A few counties in the Texas Panhandle and central Kansas have annual rates that exceed four tornadoes per 10,000 square km. Refitting the model after removing the least damaging tornadoes from the data (EF0) produces a similar map but with the greatest tornado risk shifted south and eastward. Second, a space-time model is fit to the counts aggregated in raster cells with terms that control for changes in climate factors. Results provide a short-term view of risk. The short-term view identifies a shift of tornado activity away from the Ohio Valley under El Niño conditions and away from the Southeast under positive North Atlantic oscillation conditions. The combined predictor effects on the local rates is quantified by fitting the model after leaving out the year to be predicted from the data. The models provide state-of-the-art views of tornado risk that can be used by government agencies, the insurance industry, and the general public.

Suggested Citation

  • James B Elsner & Thomas H Jagger & Tyler Fricker, 2016. "Statistical Models for Tornado Climatology: Long and Short-Term Views," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-20, November.
  • Handle: RePEc:plo:pone00:0166895
    DOI: 10.1371/journal.pone.0166895
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166895
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166895&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio C. Spassiani & Matthew S. Mason & Vincent Y. S. Cheng, 2023. "An Australian convective wind gust climatology using Bayesian hierarchical modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2037-2067, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.