IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166021.html
   My bibliography  Save this article

The Modular Adaptive Ribosome

Author

Listed:
  • Anupama Yadav
  • Aparna Radhakrishnan
  • Anshuman Panda
  • Amartya Singh
  • Himanshu Sinha
  • Gyan Bhanot

Abstract

The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

Suggested Citation

  • Anupama Yadav & Aparna Radhakrishnan & Anshuman Panda & Amartya Singh & Himanshu Sinha & Gyan Bhanot, 2016. "The Modular Adaptive Ribosome," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-23, November.
  • Handle: RePEc:plo:pone00:0166021
    DOI: 10.1371/journal.pone.0166021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166021
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manolis Kellis & Bruce W. Birren & Eric S. Lander, 2004. "Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae," Nature, Nature, vol. 428(6983), pages 617-624, April.
    2. Cheng-Ruei Lee & Jill T Anderson & Thomas Mitchell-Olds, 2014. "Unifying Genetic Canalization, Genetic Constraint, and Genotype-by-Environment Interaction: QTL by Genomic Background by Environment Interaction of Flowering Time in Boechera stricta," PLOS Genetics, Public Library of Science, vol. 10(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex N Nguyen Ba & Bob Strome & Jun Jie Hua & Jonathan Desmond & Isabelle Gagnon-Arsenault & Eric L Weiss & Christian R Landry & Alan M Moses, 2014. "Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    2. S Konini & E J Janse van Rensburg, 2017. "Mean field analysis of algorithms for scale-free networks in molecular biology," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-34, December.
    3. Lit-Hsin Loo & Danai Laksameethanasan & Yi-Ling Tung, 2014. "Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.