IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0164940.html
   My bibliography  Save this article

A Data Fusion Approach to Enhance Association Study in Epilepsy

Author

Listed:
  • Simone Marini
  • Ivan Limongelli
  • Ettore Rizzo
  • Alberto Malovini
  • Edoardo Errichiello
  • Annalisa Vetro
  • Tan Da
  • Orsetta Zuffardi
  • Riccardo Bellazzi

Abstract

Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.

Suggested Citation

  • Simone Marini & Ivan Limongelli & Ettore Rizzo & Alberto Malovini & Edoardo Errichiello & Annalisa Vetro & Tan Da & Orsetta Zuffardi & Riccardo Bellazzi, 2016. "A Data Fusion Approach to Enhance Association Study in Epilepsy," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.
  • Handle: RePEc:plo:pone00:0164940
    DOI: 10.1371/journal.pone.0164940
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164940
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164940&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0164940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li Ma & Andrew G Clark & Alon Keinan, 2013. "Gene-Based Testing of Interactions in Association Studies of Quantitative Traits," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-12, February.
    2. Geraldine M Clarke & Manuel A Rivas & Andrew P Morris, 2013. "A Flexible Approach for the Analysis of Rare Variants Allowing for a Mixture of Effects on Binary or Quantitative Traits," PLOS Genetics, Public Library of Science, vol. 9(8), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte Wang & Wen-Hsin Kao & Chuhsing Kate Hsiao, 2015. "Using Hamming Distance as Information for SNP-Sets Clustering and Testing in Disease Association Studies," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-24, August.
    2. Emily Mathieu, 2016. "AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(2), pages 151-171, April.
    3. Diana Chang & Feng Gao & Andrea Slavney & Li Ma & Yedael Y Waldman & Aaron J Sams & Paul Billing-Ross & Aviv Madar & Richard Spritz & Alon Keinan, 2014. "Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0164940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.