IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0163956.html
   My bibliography  Save this article

Exploring the Efficacy of Pooled Stools in Fecal Microbiota Transplantation for Microbiota-Associated Chronic Diseases

Author

Listed:
  • Abbas Kazerouni
  • Lawrence M Wein

Abstract

Fecal microbiota transplantation is being assessed as a treatment for chronic microbiota-related diseases such as ulcerative colitis. Results from an initial randomized trial suggest that remission rates depend on unobservable features of the fecal donors and observable features of the patients. We use mathematical modeling to assess the efficacy of pooling stools from different donors during multiple rounds of treatment. In the model, there are two types of patients and two types of donors, where the patient type is observable and the donor type (effective or not effective) is not observable. In the model, clinical outcomes from earlier rounds of treatment are used to estimate the current likelihood that each donor is effective, and then each patient in each round is treated by a pool of donors that are currently deemed to be the most effective. Relative to the no-pooling case, pools of size two or three significantly increase the proportion of patients in remission during the first several rounds of treatment. Although based on data from a single randomized trial, our modeling suggests that pooling of stools – via daily cycling of encapsulated stool from several different donors – may be beneficial in fecal microbiota transplantation for chronic microbiota-related diseases.

Suggested Citation

  • Abbas Kazerouni & Lawrence M Wein, 2017. "Exploring the Efficacy of Pooled Stools in Fecal Microbiota Transplantation for Microbiota-Associated Chronic Diseases," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0163956
    DOI: 10.1371/journal.pone.0163956
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163956
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0163956&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0163956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles K Fisher & Pankaj Mehta, 2014. "Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenta Suzuki & Masato S. Abe & Daiki Kumakura & Shinji Nakaoka & Fuki Fujiwara & Hirokuni Miyamoto & Teruno Nakaguma & Mashiro Okada & Kengo Sakurai & Shohei Shimizu & Hiroyoshi Iwata & Hiroshi Masuya, 2022. "Chemical-Mediated Microbial Interactions Can Reduce the Effectiveness of Time-Series-Based Inference of Ecological Interaction Networks," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    2. James D Brunner & Nicholas Chia, 2020. "Minimizing the number of optimizations for efficient community dynamic flux balance analysis," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-20, September.
    3. Ren Dodge & Eric W. Jones & Haolong Zhu & Benjamin Obadia & Daniel J. Martinez & Chenhui Wang & Andrés Aranda-Díaz & Kevin Aumiller & Zhexian Liu & Marco Voltolini & Eoin L. Brodie & Kerwyn Casey Huan, 2023. "A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Iris Chen & Yogeshwar D Kelkar & Yu Gu & Jie Zhou & Xing Qiu & Hulin Wu, 2017. "High-dimensional linear state space models for dynamic microbial interaction networks," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-20, November.
    5. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    6. Xu, Libai & Kong, Dehan & Wang, Lidan & Gu, Hong & Kenney, Toby & Xu, Ximing, 2023. "Proportional stochastic generalized Lotka–Volterra model with an application to learning microbial community structures," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    7. Guy Amit & Amir Bashan, 2023. "Top-down identification of keystone taxa in the microbiome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Kumar P Mainali & Sharon Bewick & Peter Thielen & Thomas Mehoke & Florian P Breitwieser & Shishir Paudel & Arjun Adhikari & Joshua Wolfe & Eric V Slud & David Karig & William F Fagan, 2017. "Statistical analysis of co-occurrence patterns in microbial presence-absence datasets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
    9. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    10. Sean M Gibbons & Sean M Kearney & Chris S Smillie & Eric J Alm, 2017. "Two dynamic regimes in the human gut microbiome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    11. Xiaokan Guo & James Q Boedicker, 2016. "The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0163956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.