IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159046.html
   My bibliography  Save this article

Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling

Author

Listed:
  • Christos T Nakas
  • Narayan Schütz
  • Marcus Werners
  • Alexander B Leichtle

Abstract

Electronic Health Record (EHR) data can be a key resource for decision-making support in clinical practice in the “big data” era. The complete database from early 2012 to late 2015 involving hospital admissions to Inselspital Bern, the largest Swiss University Hospital, was used in this study, involving over 100,000 admissions. Age, sex, and initial laboratory test results were the features/variables of interest for each admission, the outcome being inpatient mortality. Computational decision support systems were utilized for the calculation of the risk of inpatient mortality. We assessed the recently proposed Acute Laboratory Risk of Mortality Score (ALaRMS) model, and further built generalized linear models, generalized estimating equations, artificial neural networks, and decision tree systems for the predictive modeling of the risk of inpatient mortality. The Area Under the ROC Curve (AUC) for ALaRMS marginally corresponded to the anticipated accuracy (AUC = 0.858). Penalized logistic regression methodology provided a better result (AUC = 0.872). Decision tree and neural network-based methodology provided even higher predictive performance (up to AUC = 0.912 and 0.906, respectively). Additionally, decision tree-based methods can efficiently handle Electronic Health Record (EHR) data that have a significant amount of missing records (in up to >50% of the studied features) eliminating the need for imputation in order to have complete data. In conclusion, we show that statistical learning methodology can provide superior predictive performance in comparison to existing methods and can also be production ready. Statistical modeling procedures provided unbiased, well-calibrated models that can be efficient decision support tools for predicting inpatient mortality and assigning preventive measures.

Suggested Citation

  • Christos T Nakas & Narayan Schütz & Marcus Werners & Alexander B Leichtle, 2016. "Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-11, July.
  • Handle: RePEc:plo:pone00:0159046
    DOI: 10.1371/journal.pone.0159046
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159046
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159046&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joon Lee & David M Maslove & Joel A Dubin, 2015. "Personalized Mortality Prediction Driven by Electronic Medical Data and a Patient Similarity Metric," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Yuan, Ming & Lin, Yi, 2005. "Efficient Empirical Bayes Variable Selection and Estimation in Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1215-1225, December.
    5. Su, Yu-Sung & Gelman, Andrew & Hill, Jennifer & Yajima, Masanao, 2011. "Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i02).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Lu & Raheel Ahmad & Thomas Nguyen & Jeffrey Cifello & Humza Hemani & Jiangyuan Li & Jinguo Chen & Siyi Li & Jing Wang & Achouak Achour & Joseph Chen & Meagan Colie & Ana Lustig & Christopher Dunn, 2022. "Heterogeneity and transcriptome changes of human CD8+ T cells across nine decades of life," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Andreas Floren & Tobias Müller, 2023. "Using a Machine Learning Approach to Classify the Degree of Forest Management," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    3. Qian Wang & Tao Yan & Zhengbiao Long & Luna Yue Huang & Yang Zhu & Ying Xu & Xiaoyang Chen & Haksong Pak & Jiqiang Li & Dezhi Wu & Yang Xu & Shuijin Hua & Lixi Jiang, 2021. "Prediction of heterosis in the recent rapeseed (Brassica napus) polyploid by pairing parental nucleotide sequences," PLOS Genetics, Public Library of Science, vol. 17(11), pages 1-22, November.
    4. Marc Jan Bonder & Stephen J. Clark & Felix Krueger & Siyuan Luo & João Agostinho de Sousa & Aida M. Hashtroud & Thomas M. Stubbs & Anne-Katrien Stark & Steffen Rulands & Oliver Stegle & Wolf Reik & Fe, 2024. "scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Lauren P. Grant & Chris Gennings & Edmond P. Wickham & Derek Chapman & Shumei Sun & David C. Wheeler, 2018. "Modeling Pediatric Body Mass Index and Neighborhood Environment at Different Spatial Scales," IJERPH, MDPI, vol. 15(3), pages 1-19, March.
    7. Jacob Bergstedt & Sadoune Ait Kaci Azzou & Kristin Tsuo & Anthony Jaquaniello & Alejandra Urrutia & Maxime Rotival & David T. S. Lin & Julia L. MacIsaac & Michael S. Kobor & Matthew L. Albert & Darrag, 2022. "The immune factors driving DNA methylation variation in human blood," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Colin Griesbach & Andreas Groll & Elisabeth Bergherr, 2021. "Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    9. Joshua P White & Simon Dennis & Martin Tomko & Jessica Bell & Stephan Winter, 2021. "Paths to social licence for tracking-data analytics in university research and services," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    10. Monica E. Ellwood-Lowe & Susan Whitfield-Gabrieli & Silvia A. Bunge, 2021. "Brain network coupling associated with cognitive performance varies as a function of a child’s environment in the ABCD study," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Jack S. Gisby & Norzawani B. Buang & Artemis Papadaki & Candice L. Clarke & Talat H. Malik & Nicholas Medjeral-Thomas & Damiola Pinheiro & Paige M. Mortimer & Shanice Lewis & Eleanor Sandhu & Stephen , 2022. "Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    12. Heather E Wheeler & Kaanan P Shah & Jonathon Brenner & Tzintzuni Garcia & Keston Aquino-Michaels & GTEx Consortium & Nancy J Cox & Dan L Nicolae & Hae Kyung Im, 2016. "Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues," PLOS Genetics, Public Library of Science, vol. 12(11), pages 1-23, November.
    13. Gaia Molinaro & Irene Cogliati Dezza & Sarah Katharina Bühler & Christina Moutsiana & Tali Sharot, 2023. "Multifaceted information-seeking motives in children," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Florian Pargent & Florian Pfisterer & Janek Thomas & Bernd Bischl, 2022. "Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features," Computational Statistics, Springer, vol. 37(5), pages 2671-2692, November.
    15. Martha Jeong & Julia Minson & Michael Yeomans & Francesca Gino, 2019. "Communicating with Warmth in Distributive Negotiations Is Surprisingly Counterproductive," Management Science, INFORMS, vol. 65(12), pages 5813-5837, December.
    16. Luchang Ming & Debao Fu & Zhaona Wu & Hu Zhao & Xingbing Xu & Tingting Xu & Xiaohu Xiong & Mu Li & Yi Zheng & Ge Li & Ling Yang & Chunjiao Xia & Rongfang Zhou & Keyan Liao & Qian Yu & Wenqi Chai & Sij, 2023. "Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    18. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    19. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    20. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.