IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0158303.html
   My bibliography  Save this article

Impact and Cost-Effectiveness of Point-Of-Care CD4 Testing on the HIV Epidemic in South Africa

Author

Listed:
  • Alastair Heffernan
  • Ella Barber
  • Ranjeeta Thomas
  • Christophe Fraser
  • Michael Pickles
  • Anne Cori

Abstract

Rapid diagnostic tools have been shown to improve linkage of patients to care. In the context of infectious diseases, assessing the impact and cost-effectiveness of such tools at the population level, accounting for both direct and indirect effects, is key to informing adoption of these tools. Point-of-care (POC) CD4 testing has been shown to be highly effective in increasing the proportion of HIV positive patients who initiate ART. We assess the impact and cost-effectiveness of introducing POC CD4 testing at the population level in South Africa in a range of care contexts, using a dynamic compartmental model of HIV transmission, calibrated to the South African HIV epidemic. We performed a meta-analysis to quantify the differences between POC and laboratory CD4 testing on the proportion linking to care following CD4 testing. Cumulative infections averted and incremental cost-effectiveness ratios (ICERs) were estimated over one and three years. We estimated that POC CD4 testing introduced in the current South African care context can prevent 1.7% (95% CI: 0.4% - 4.3%) of new HIV infections over 1 year. In that context, POC CD4 testing was cost-effective 99.8% of the time after 1 year with a median estimated ICER of US$4,468/DALY averted. In healthcare contexts with expanded HIV testing and improved retention in care, POC CD4 testing only became cost-effective after 3 years. The results were similar when, in addition, ART was offered irrespective of CD4 count, and CD4 testing was used for clinical assessment. Our findings suggest that even if ART is expanded to all HIV positive individuals and HIV testing efforts are increased in the near future, POC CD4 testing is a cost-effective tool, even within a short time horizon. Our study also illustrates the importance of evaluating the potential impact of such diagnostic technologies at the population level, so that indirect benefits and costs can be incorporated into estimations of cost-effectiveness.

Suggested Citation

  • Alastair Heffernan & Ella Barber & Ranjeeta Thomas & Christophe Fraser & Michael Pickles & Anne Cori, 2016. "Impact and Cost-Effectiveness of Point-Of-Care CD4 Testing on the HIV Epidemic in South Africa," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-12, July.
  • Handle: RePEc:plo:pone00:0158303
    DOI: 10.1371/journal.pone.0158303
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158303
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0158303&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0158303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth R Stevens & Lingfeng Li & Kimberly A Nucifora & Qinlian Zhou & Margaret L McNairy & Averie Gachuhi & Matthew R Lamb & Harriet Nuwagaba-Biribonwoha & Ruben Sahabo & Velephi Okello & Wafaa M E, 2018. "Cost-effectiveness of a combination strategy to enhance the HIV care continuum in Swaziland: Link4Health," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-17, September.
    2. Sarah J Girdwood & Brooke E Nichols & Crispin Moyo & Thomas Crompton & Dorman Chimhamhiwa & Sydney Rosen, 2019. "Optimizing viral load testing access for the last mile: Geospatial cost model for point of care instrument placement," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    3. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    4. H. Christopher Frey, 2002. "Introduction to Special Section on Sensitivity Analysis and Summary of NCSU/USDA Workshop on Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 539-545, June.
    5. Terje Aven, 2020. "Risk Science Contributions: Three Illustrating Examples," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1889-1899, October.
    6. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    7. Emanuele Borgonovo, 2008. "Epistemic Uncertainty in the Ranking and Categorization of Probabilistic Safety Assessment Model Elements: Issues and Findings," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 983-1001, August.
    8. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    9. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    10. Jared M. Hansen & Paul Wilson, 2023. "Modeling and explaining the growth patterns over time of country-specific website clickstream metrics," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 561-576, December.
    11. Zhou, Changcong & Zhang, Hanlin & Valdebenito, Marcos A. & Zhao, Haodong, 2022. "A general hierarchical ensemble-learning framework for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    13. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    14. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    15. Chih-Wen Chang & Zohaib Ali Qureshi & Sania Qureshi & Asif Ali Shaikh & Muhammad Yaqoob Shahani, 2024. "Real-Data-Based Study on Divorce Dynamics and Elimination Strategies Using Nonlinear Differential Equations," Mathematics, MDPI, vol. 12(16), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0158303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.