IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0156750.html
   My bibliography  Save this article

Suppressing Respiration Effects when Geometric Distortion Is Corrected Dynamically by Phase Labeling for Additional Coordinate Encoding (PLACE) during Functional MRI

Author

Listed:
  • Zahra Faraji-Dana
  • Fred Tam
  • J Jean Chen
  • Simon J Graham

Abstract

Echo planar imaging (EPI) suffers from geometric distortions caused by magnetic field inhomogeneities, which can be time-varying as a result of small amounts of head motion that occur over seconds and minutes during fMRI experiments, also known as “dynamic geometric distortion”. Phase Labeling for Additional Coordinate Encoding (PLACE) is a promising technique for geometric distortion correction without reduced temporal resolution and in principle can be used to correct for motion-induced dynamic geometric distortion. PLACE requires at least two EPI images of the same anatomy that are ideally acquired with no variation in the magnetic field inhomogeneities. However, head motion and lung ventilation during the respiratory cycle can cause changes in magnetic field inhomogeneities within the EPI pair used for PLACE. In this work, we exploited dynamic off-resonance in k-space (DORK) and averaging to correct the within EPI pair magnetic field inhomogeneities; and hence proposed a combined technique (DORK+PLACE+averaging) to mitigate dynamic geometric distortion in EPI-based fMRI while preserving the temporal resolution. The performance of the combined DORK, PLACE and averaging technique was characterized through several imaging experiments involving test phantoms and six healthy adult volunteers. Phantom data illustrate reduced temporal standard deviation of fMRI signal intensities after use of combined dynamic PLACE, DORK and averaging compared to the standard processing and static geometric distortion correction. The combined technique also substantially improved the temporal standard deviation and activation maps obtained from human fMRI data in comparison to the results obtained by standard processing and static geometric distortion correction, highlighting the utility of the approach.

Suggested Citation

  • Zahra Faraji-Dana & Fred Tam & J Jean Chen & Simon J Graham, 2016. "Suppressing Respiration Effects when Geometric Distortion Is Corrected Dynamically by Phase Labeling for Additional Coordinate Encoding (PLACE) during Functional MRI," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0156750
    DOI: 10.1371/journal.pone.0156750
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156750
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0156750&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0156750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McCullagh, Peter, 1984. "Generalized linear models," European Journal of Operational Research, Elsevier, vol. 16(3), pages 285-292, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tengyuan Liang & Weijie J. Su, 2019. "Statistical inference for the population landscape via moment‐adjusted stochastic gradients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 431-456, April.
    2. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    3. Anglin, Aaron H. & Wolfe, Marcus T. & Short, Jeremy C. & McKenny, Aaron F. & Pidduck, Robert J., 2018. "Narcissistic rhetoric and crowdfunding performance: A social role theory perspective," Journal of Business Venturing, Elsevier, vol. 33(6), pages 780-812.
    4. Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
    5. Kwanda Sydwell Ngwenduna & Rendani Mbuvha, 2021. "Alleviating Class Imbalance in Actuarial Applications Using Generative Adversarial Networks," Risks, MDPI, vol. 9(3), pages 1-33, March.
    6. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    7. Monfort, Abel & Villagra, Nuria & Sánchez, Joaquín, 2021. "Economic impact of corporate foundations: An event analysis approach," Journal of Business Research, Elsevier, vol. 122(C), pages 159-170.
    8. Paul Vos, 1995. "Quasi-likelihood or extended quasi-likelihood? An information-geometric approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 49-64, January.
    9. Trond Petersen, 1986. "Estimating Fully Parametric Hazard Rate Models with Time-Dependent Covariates," Sociological Methods & Research, , vol. 14(3), pages 219-246, February.
    10. Zhengmin Duan & Yonglian Chang & Qi Wang & Tianyao Chen & Qing Zhao, 2018. "A Logistic Regression Based Auto Insurance Rate-Making Model Designed for the Insurance Rate Reform," IJFS, MDPI, vol. 6(1), pages 1-16, February.
    11. Christine Howard & Emma-Liina Marjakangas & Alejandra Morán-Ordóñez & Pietro Milanesi & Aleksandre Abuladze & Karen Aghababyan & Vitalie Ajder & Volen Arkumarev & Dawn E. Balmer & Hans-Günther Bauer &, 2023. "Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    13. Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
    14. Daniel Kouloukoui & Sônia Maria da Silva Gomes & Marcia Mara de Oliveira Marinho & Ednildo Andrade Torres & Asher Kiperstok & Pieter de Jong, 2018. "Disclosure of climate risk information by the world’s largest companies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1251-1279, December.
    15. Yuanqiao Li & Xiuchen Wu & Yongmei Huang & Xiaoyan Li & Fangzhong Shi & Shoudong Zhao & Yuting Yang & Yuhong Tian & Pei Wang & Shulei Zhang & Cicheng Zhang & Yang Wang & Chongyang Xu & Pengwu Zhao, 2021. "Compensation effect of winter snow on larch growth in Northeast China," Climatic Change, Springer, vol. 164(3), pages 1-17, February.
    16. Warnick, Benjamin J. & Davis, Blakley C. & Allison, Thomas H. & Anglin, Aaron H., 2021. "Express yourself: Facial expression of happiness, anger, fear, and sadness in funding pitches," Journal of Business Venturing, Elsevier, vol. 36(4).
    17. Anglin, Aaron H. & Short, Jeremy C. & Drover, Will & Stevenson, Regan M. & McKenny, Aaron F. & Allison, Thomas H., 2018. "The power of positivity? The influence of positive psychological capital language on crowdfunding performance," Journal of Business Venturing, Elsevier, vol. 33(4), pages 470-492.
    18. Tajvarpour, Mohammad Hossein & Pujari, Devashish, 2022. "The influence of narrative description on the success of crowdfunding campaigns: The moderating role of quality signals," Journal of Business Research, Elsevier, vol. 149(C), pages 123-138.
    19. Sheikh S. Abdullah & Neda Rostamzadeh & Kamran Sedig & Amit X. Garg & Eric McArthur, 2020. "Multiple Regression Analysis and Frequent Itemset Mining of Electronic Medical Records: A Visual Analytics Approach Using VISA_M3R3," Data, MDPI, vol. 5(2), pages 1-24, March.
    20. Yang, Jing Yu & Wen, Liang & Volk, Stefan & Lu, Jane Wenzhen, 2022. "Temporal boundaries and expatriate staffing: Effects of parent–subsidiary work-time overlap," Journal of World Business, Elsevier, vol. 57(6).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0156750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.