IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0156744.html
   My bibliography  Save this article

Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer

Author

Listed:
  • Giovanny Covarrubias-Pazaran

Abstract

Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.

Suggested Citation

  • Giovanny Covarrubias-Pazaran, 2016. "Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
  • Handle: RePEc:plo:pone00:0156744
    DOI: 10.1371/journal.pone.0156744
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156744
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0156744&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0156744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyna Persa & Martin Grondona & Diego Jarquin, 2021. "Development of a Genomic Prediction Pipeline for Maintaining Comparable Sample Sizes in Training and Testing Sets across Prediction Schemes Accounting for the Genotype-by-Environment Interaction," Agriculture, MDPI, vol. 11(10), pages 1-17, September.
    2. Joseph J. Hale & Takeshi Matsui & Ilan Goldstein & Martin N. Mullis & Kevin R. Roy & Christopher Ne Ville & Darach Miller & Charley Wang & Trevor Reynolds & Lars M. Steinmetz & Sasha F. Levy & Ian M. , 2024. "Genome-scale analysis of interactions between genetic perturbations and natural variation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Martina Hančová & Andrej Gajdoš & Jozef Hanč & Gabriela Vozáriková, 2021. "Estimating variances in time series kriging using convex optimization and empirical BLUPs," Statistical Papers, Springer, vol. 62(4), pages 1899-1938, August.
    4. Luciano Rogério Braatz de Andrade & Massaine Bandeira e Sousa & Eder Jorge Oliveira & Marcos Deon Vilela de Resende & Camila Ferreira Azevedo, 2019. "Cassava yield traits predicted by genomic selection methods," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-22, November.
    5. Md. S. Islam & Per McCord & Quentin D. Read & Lifang Qin & Alexander E. Lipka & Sushma Sood & James Todd & Marcus Olatoye, 2022. "Accuracy of Genomic Prediction of Yield and Sugar Traits in Saccharum spp. Hybrids," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
    6. Gaotian Zhang & Nicole M. Roberto & Daehan Lee & Steffen R. Hahnel & Erik C. Andersen, 2022. "The impact of species-wide gene expression variation on Caenorhabditis elegans complex traits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Mathias Ruben Gemmer & Chris Richter & Yong Jiang & Thomas Schmutzer & Manish L Raorane & Björn Junker & Klaus Pillen & Andreas Maurer, 2020. "Can metabolic prediction be an alternative to genomic prediction in barley?," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    8. Takeshi Matsui & Martin N. Mullis & Kevin R. Roy & Joseph J. Hale & Rachel Schell & Sasha F. Levy & Ian M. Ehrenreich, 2022. "The interplay of additivity, dominance, and epistasis on fitness in a diploid yeast cross," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Ibrahim ElBasyoni & Mohamed Saadalla & Stephen Baenziger & Harold Bockelman & Sabah Morsy, 2017. "Cell Membrane Stability and Association Mapping for Drought and Heat Tolerance in a Worldwide Wheat Collection," Sustainability, MDPI, vol. 9(9), pages 1-16, September.
    10. Mitchell J. Feldmann & Dominique D. A. Pincot & Glenn S. Cole & Steven J. Knapp, 2024. "Genetic gains underpinning a little-known strawberry Green Revolution," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0156744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.