IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0155413.html
   My bibliography  Save this article

Transcription Analysis of the Myometrium of Labouring and Non-Labouring Women

Author

Listed:
  • Gemma C Sharp
  • James L Hutchinson
  • Nanette Hibbert
  • Tom C Freeman
  • Philippa T K Saunders
  • Jane E Norman

Abstract

An incomplete understanding of the molecular mechanisms that initiate normal human labour at term seriously hampers the development of effective ways to predict, prevent and treat disorders such as preterm labour. Appropriate analysis of large microarray experiments that compare gene expression in non-labouring and labouring gestational tissues is necessary to help bridge these gaps in our knowledge. In this work, gene expression in 48 (22 labouring, 26 non-labouring) lower-segment myometrial samples collected at Caesarean section were analysed using Illumina HT-12 v4.0 BeadChips. Normalised data were compared between labouring and non-labouring groups using traditional statistical methods and a novel network graph approach. We sought technical validation with quantitative real-time PCR, and biological replication through inverse variance-weighted meta-analysis with published microarray data. We have extended the list of genes suggested to be associated with labour: Compared to non-labouring samples, labouring samples showed apparent higher expression at 960 probes (949 genes) and apparent lower expression at 801 probes (789 genes) (absolute fold change ≥1.2, rank product percentage of false positive value (RP-PFP)

Suggested Citation

  • Gemma C Sharp & James L Hutchinson & Nanette Hibbert & Tom C Freeman & Philippa T K Saunders & Jane E Norman, 2016. "Transcription Analysis of the Myometrium of Labouring and Non-Labouring Women," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-21, May.
  • Handle: RePEc:plo:pone00:0155413
    DOI: 10.1371/journal.pone.0155413
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155413
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0155413&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0155413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feher Kristen & Whelan James & Müller Samuel, 2011. "Assessing Modularity Using a Random Matrix Theory Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0155413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.