IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0154848.html
   My bibliography  Save this article

The Power of Implicit Social Relation in Rating Prediction of Social Recommender Systems

Author

Listed:
  • Waleed Reafee
  • Naomie Salim
  • Atif Khan

Abstract

The explosive growth of social networks in recent times has presented a powerful source of information to be utilized as an extra source for assisting in the social recommendation problems. The social recommendation methods that are based on probabilistic matrix factorization improved the recommendation accuracy and partly solved the cold-start and data sparsity problems. However, these methods only exploited the explicit social relations and almost completely ignored the implicit social relations. In this article, we firstly propose an algorithm to extract the implicit relation in the undirected graphs of social networks by exploiting the link prediction techniques. Furthermore, we propose a new probabilistic matrix factorization method to alleviate the data sparsity problem through incorporating explicit friendship and implicit friendship. We evaluate our proposed approach on two real datasets, Last.Fm and Douban. The experimental results show that our method performs much better than the state-of-the-art approaches, which indicates the importance of incorporating implicit social relations in the recommendation process to address the poor prediction accuracy.

Suggested Citation

  • Waleed Reafee & Naomie Salim & Atif Khan, 2016. "The Power of Implicit Social Relation in Rating Prediction of Social Recommender Systems," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-20, May.
  • Handle: RePEc:plo:pone00:0154848
    DOI: 10.1371/journal.pone.0154848
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154848
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0154848&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0154848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    2. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    3. Joonhyuk Yang & Jinwook Kim & Wonjoon Kim & Young Hwan Kim, 2012. "Measuring User Similarity Using Electric Circuit Analysis: Application to Collaborative Filtering," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-10, November.
    4. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    5. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    2. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    3. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    4. Zan Huang & Daniel Dajun Zeng, 2011. "Why Does Collaborative Filtering Work? Transaction-Based Recommendation Model Validation and Selection by Analyzing Bipartite Random Graphs," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 138-152, February.
    5. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    6. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Hanbaek Lyu & Yacoub H. Kureh & Joshua Vendrow & Mason A. Porter, 2024. "Learning low-rank latent mesoscale structures in networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Davazdahemami, Behrooz & Kalgotra, Pankush & Zolbanin, Hamed M. & Delen, Dursun, 2023. "A developer-oriented recommender model for the app store: A predictive network analytics approach," Journal of Business Research, Elsevier, vol. 158(C).
    9. Haizheng Zhang & Baojun Qiu & Kristinka Ivanova & C. Lee Giles & Henry C. Foley & John Yen, 2010. "Locality and attachedness‐based temporal social network growth dynamics analysis: A case study of evolving nanotechnology scientific collaboration networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(5), pages 964-977, May.
    10. Sanda Martinčić-Ipšić & Edvin Močibob & Matjaž Perc, 2017. "Link prediction on Twitter," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    11. Vivek F. Farias & Andrew A. L, 2019. "Learning Preferences with Side Information," Management Science, INFORMS, vol. 65(7), pages 3131-3149, July.
    12. Zhang, Ting & Zhang, Kun & Li, Xun & Lv, Laishui & Sun, Qi, 2021. "Semi-supervised link prediction based on non-negative matrix factorization for temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Wenlong Sun & Olfa Nasraoui & Patrick Shafto, 2020. "Evolution and impact of bias in human and machine learning algorithm interaction," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-39, August.
    14. Choi, Jaewoong & Lee, Changyong & Yoon, Janghyeok, 2023. "Exploring a technology ecology for technology opportunity discovery: A link prediction approach using heterogeneous knowledge graphs," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    15. Wahid-Ul-Ashraf, Akanda & Budka, Marcin & Musial, Katarzyna, 2019. "How to predict social relationships — Physics-inspired approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1110-1129.
    16. Jinseok Kim & Jana Diesner, 2019. "Formational bounds of link prediction in collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 687-706, May.
    17. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    18. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    19. Marian-Gabriel Hâncean & Matjaž Perc & Lazăr Vlăsceanu, 2014. "Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    20. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0154848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.