IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0152857.html
   My bibliography  Save this article

Behavior Based Social Dimensions Extraction for Multi-Label Classification

Author

Listed:
  • Le Li
  • Junyi Xu
  • Weidong Xiao
  • Bin Ge

Abstract

Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes’ behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes’ connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions.

Suggested Citation

  • Le Li & Junyi Xu & Weidong Xiao & Bin Ge, 2016. "Behavior Based Social Dimensions Extraction for Multi-Label Classification," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0152857
    DOI: 10.1371/journal.pone.0152857
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152857
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152857&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0152857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qian-Ming Zhang & Ming-Sheng Shang & Linyuan Lü, 2010. "Similarity-Based Classification In Partially Labeled Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 813-824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yinzuo & Wu, Chencheng & Tan, Lulu, 2021. "Biased random walk with restart for link prediction with graph embedding method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Haji Gul & Feras Al-Obeidat & Adnan Amin & Fernando Moreira & Kaizhu Huang, 2022. "Hill Climbing-Based Efficient Model for Link Prediction in Undirected Graphs," Mathematics, MDPI, vol. 10(22), pages 1-15, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0152857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.