IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0151544.html
   My bibliography  Save this article

Neighbourhood Walkability and Daily Steps in Adults with Type 2 Diabetes

Author

Listed:
  • Samantha Hajna
  • Nancy A Ross
  • Lawrence Joseph
  • Sam Harper
  • Kaberi Dasgupta

Abstract

Introduction: There is evidence that greater neighbourhood walkability (i.e., neighbourhoods with more amenities and well-connected streets) is associated with higher levels of total walking in Europe and in Asia, but it remains unclear if this association holds in the Canadian context and in chronic disease populations. We examined the relationships of different walkability measures to biosensor-assessed total walking (i.e., steps/day) in adults with type 2 diabetes living in Montreal (QC, Canada). Materials and Methods: Participants (60.5±10.4 years; 48.1% women) were recruited through McGill University-affiliated clinics (June 2006 to May 2008). Steps/day were assessed once per season for one year with pedometers. Neighbourhood walkability was evaluated through participant reports, in-field audits, Geographic Information Systems (GIS)-derived measures, and the Walk Score®. Relationships between walkability and daily steps were estimated using Bayesian longitudinal hierarchical linear regression models (n = 131). Results: Participants who reported living in the most compared to the least walkable neighbourhoods completed 1345 more steps/day (95% Credible Interval: 718, 1976; Quartiles 4 versus 1). Those living in the most compared to the least walkable neighbourhoods (based on GIS-derived walkability) completed 606 more steps per day (95% CrI: 8, 1203). No statistically significant associations with steps were observed for audit-assessed walkability or the Walk Score®. Conclusions: Adults with type 2 diabetes who perceived their neighbourhoods as more walkable accumulated more daily steps. This suggests that knowledge of local neighborhood features that enhance walking is a meaningful predictor of higher levels of walking and an important component of neighbourhood walkability.

Suggested Citation

  • Samantha Hajna & Nancy A Ross & Lawrence Joseph & Sam Harper & Kaberi Dasgupta, 2016. "Neighbourhood Walkability and Daily Steps in Adults with Type 2 Diabetes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0151544
    DOI: 10.1371/journal.pone.0151544
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151544
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0151544&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0151544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank, Lawrence Douglas & Saelens, Brian E. & Powell, Ken E. & Chapman, James E., 2007. "Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity?," Social Science & Medicine, Elsevier, vol. 65(9), pages 1898-1914, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chuyun & Tang, Jinjun & Kong, Xiangxin & Yu, Tianjian & Li, Zhitao, 2024. "Emission analysis of multi-mode public transportation based on joint choice model considering built environment factors," Energy, Elsevier, vol. 309(C).
    2. Hamdi Lemamsha & Chris Papadopoulos & Gurch Randhawa, 2018. "Perceived Environmental Factors Associated with Obesity in Libyan Men and Women," IJERPH, MDPI, vol. 15(2), pages 1-16, February.
    3. Kajosaari, Anna & Hasanzadeh, Kamyar & Kyttä, Marketta, 2019. "Residential dissonance and walking for transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 134-144.
    4. Wenjia Zhang & Ming Zhang, 2018. "Incorporating land use and pricing policies for reducing car dependence: Analytical framework and empirical evidence," Urban Studies, Urban Studies Journal Limited, vol. 55(13), pages 3012-3033, October.
    5. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    6. Colette Cunningham-Myrie & Katherine P Theall & Novie Younger-Coleman & Lisa-Gaye Greene & Parris Lyew-Ayee & Rainford Wilks, 2021. "Associations of neighborhood physical and crime environments with obesity-related outcomes in Jamaica," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    7. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    8. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    9. Wang, Fenglong & Mao, Zidan & Wang, Donggen, 2020. "Residential relocation and travel satisfaction change: An empirical study in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 341-353.
    10. Yuval Arbel & Chaim Fialkoff & Amichai Kerner, 2020. "The Chicken and Egg Problem: Obesity and the Urban Monocentric Model," The Journal of Real Estate Finance and Economics, Springer, vol. 61(4), pages 576-606, November.
    11. Bentley, Rebecca & Jolley, Damien & Kavanagh, Anne Marie, 2010. "Local environments as determinants of walking in Melbourne, Australia," Social Science & Medicine, Elsevier, vol. 70(11), pages 1806-1815, June.
    12. Andy Hong & Marlon G. Boarnet & Doug Houston, 2013. "Does light rail transit increase physical activity?," Working Paper 9212, USC Lusk Center for Real Estate.
    13. Neatt, Kevin & Millward, Hugh & Spinney, Jamie, 2017. "Neighborhood walking densities: A multivariate analysis in Halifax, Canada," Journal of Transport Geography, Elsevier, vol. 61(C), pages 9-16.
    14. Yang, Shuo & Zhou, Leyu & Liu, Chang & Sun, Shan & Guo, Liang & Sun, Xiaoli, 2024. "Examining multiscale built environment interventions to mitigate travel-related carbon emissions," Journal of Transport Geography, Elsevier, vol. 119(C).
    15. repec:spo:wpmain:info:hdl:2441/7po41o0s2r8a280jp65ahvu46k is not listed on IDEAS
    16. Thomas Schofield & Melissa Merrick & Chia-Feng Chen, 2016. "Reciprocal Associations between Neighborhood Context and Parent Investments: Selection Effects in Two Longitudinal Samples," Working Papers wp16-08-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    17. Sera Kim & Honghyok Kim & Jong-Tae Lee, 2019. "Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016," IJERPH, MDPI, vol. 16(10), pages 1-10, May.
    18. Winters, Meghan & Voss, Christine & Ashe, Maureen C. & Gutteridge, Kaitlyn & McKay, Heather & Sims-Gould, Joanie, 2015. "Where do they go and how do they get there? Older adults' travel behaviour in a highly walkable environment," Social Science & Medicine, Elsevier, vol. 133(C), pages 304-312.
    19. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.
    20. Gerlinde Grasser & Delfien Dyck & Sylvia Titze & Willibald Stronegger, 2013. "Objectively measured walkability and active transport and weight-related outcomes in adults: a systematic review," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(4), pages 615-625, August.
    21. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0151544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.