IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0151235.html
   My bibliography  Save this article

Assessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals

Author

Listed:
  • M Lesperance
  • W J Reed
  • M A Stephens
  • C Tsao
  • B Wilton

Abstract

Benford’s Law is a probability distribution for the first significant digits of numbers, for example, the first significant digits of the numbers 871 and 0.22 are 8 and 2 respectively. The law is particularly remarkable because many types of data are considered to be consistent with Benford’s Law and scientists and investigators have applied it in diverse areas, for example, diagnostic tests for mathematical models in Biology, Genomics, Neuroscience, image analysis and fraud detection. In this article we present and compare statistically sound methods for assessing conformance of data with Benford’s Law, including discrete versions of Cramér-von Mises (CvM) statistical tests and simultaneous confidence intervals. We demonstrate that the common use of many binomial confidence intervals leads to rejection of Benford too often for truly Benford data. Based on our investigation, we recommend that the CvM statistic U d 2, Pearson’s chi-square statistic and 100(1 − α)% Goodman’s simultaneous confidence intervals be computed when assessing conformance with Benford’s Law. Visual inspection of the data with simultaneous confidence intervals is useful for understanding departures from Benford and the influence of sample size.

Suggested Citation

  • M Lesperance & W J Reed & M A Stephens & C Tsao & B Wilton, 2016. "Assessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0151235
    DOI: 10.1371/journal.pone.0151235
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151235
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0151235&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0151235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven J. Miller, 2015. "Benford's Law: Theory and Applications," Economics Books, Princeton University Press, edition 1, number 10527.
    2. Steven J. Miller, 2015. "A Quick Introduction to Benford’s Law," Introductory Chapters, in: Benford's Law: Theory and Applications, Princeton University Press.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Delu & Chen, Fan & Mao, Jinqi & Liu, Nannan & Rong, Fangyu, 2022. "Are the official national data credible? Empirical evidence from statistics quality evaluation of China's coal and its downstream industries," Energy Economics, Elsevier, vol. 114(C).
    2. Ausloos, Marcel & Ficcadenti, Valerio & Dhesi, Gurjeet & Shakeel, Muhammad, 2021. "Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Parnes, Dror, 2022. "Banks' off-balance sheet manipulations," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 314-331.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip E Hulme & Danish A Ahmed & Phillip J Haubrock & Brooks A Kaiser & Melina Kourantidou & Boris Leroy & Shana M Mcdermott, 2024. "Widespread imprecision in estimates of the economic costs of invasive alien species worldwide," Post-Print hal-04633043, HAL.
    2. Roy Cerqueti & Claudio Lupi, 2021. "Some New Tests of Conformity with Benford’s Law," Stats, MDPI, vol. 4(3), pages 1-17, September.
    3. Ausloos, Marcel & Ficcadenti, Valerio & Dhesi, Gurjeet & Shakeel, Muhammad, 2021. "Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Huang, Yasheng & Niu, Zhiyong & Yang, Clair, 2020. "Testing firm-level data quality in China against Benford’s Law," Economics Letters, Elsevier, vol. 192(C).
    5. Arno Berger & Theodore P. Hill, 2021. "The mathematics of Benford’s law: a primer," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 779-795, September.
    6. Katherine M. Anderson & Kevin Dayaratna & Drew Gonshorowski & Steven J. Miller, 2022. "A New Benford Test for Clustered Data with Applications to American Elections," Stats, MDPI, vol. 5(3), pages 1-15, August.
    7. Lucio Barabesi & Andrea Cerioli & Domenico Perrotta, 2021. "Forum on Benford’s law and statistical methods for the detection of frauds," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 767-778, September.
    8. Gueron, Eduardo & Pellegrini, Jerônimo, 2022. "Application of Benford–Newcomb law with base change to electoral fraud detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Madeleine Farris & Noah Luntzlara & Steven J. Miller & Lily Shao & Mengxi Wang, 2021. "Recurrence relations and Benford’s law," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 797-817, September.
    10. Arno Berger & Chuang Xu, 2019. "Best Finite Approximations of Benford’s Law," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1525-1553, September.
    11. Don Lemons & Nathan Lemons & William Peter, 2021. "First Digit Oscillations," Stats, MDPI, vol. 4(3), pages 1-7, July.
    12. Barabesi, Lucio & Pratelli, Luca, 2020. "On the Generalized Benford law," Statistics & Probability Letters, Elsevier, vol. 160(C).
    13. Jaroslav Petráš & Marek Pavlík & Ján Zbojovský & Ardian Hyseni & Jozef Dudiak, 2023. "Benford’s Law in Electric Distribution Network," Mathematics, MDPI, vol. 11(18), pages 1-27, September.
    14. Hsiang-chi Tseng & Wei-neng Huang & Ding-wei Huang, 2017. "Modified Benford’s law for two-exponent distributions," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1403-1413, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0151235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.