IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics037843712200766x.html
   My bibliography  Save this article

Application of Benford–Newcomb law with base change to electoral fraud detection

Author

Listed:
  • Gueron, Eduardo
  • Pellegrini, Jerônimo

Abstract

The invariance of Benford–Newcomb law under base changing is employed to test whether or not some data follow such distribution. Taking into account the Brazilian senate election in 1994, changes in the numerical base were able to evidence probable fraud.

Suggested Citation

  • Gueron, Eduardo & Pellegrini, Jerônimo, 2022. "Application of Benford–Newcomb law with base change to electoral fraud detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s037843712200766x
    DOI: 10.1016/j.physa.2022.128208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200766X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Benford, 2021. "Base Dependence of Benford Random Variables," Stats, MDPI, vol. 4(3), pages 1-17, July.
    2. Deckert, Joseph & Myagkov, Mikhail & Ordeshook, Peter C., 2011. "Benford's Law and the Detection of Election Fraud," Political Analysis, Cambridge University Press, vol. 19(3), pages 245-268, July.
    3. Schatte, P., 1998. "On Benford's law to variable base," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 391-397, March.
    4. Steven J. Miller, 2015. "Benford's Law: Theory and Applications," Economics Books, Princeton University Press, edition 1, number 10527.
    5. Boudewijn F. Roukema, 2014. "A first-digit anomaly in the 2009 Iranian presidential election," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 164-199, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yasheng & Niu, Zhiyong & Yang, Clair, 2020. "Testing firm-level data quality in China against Benford’s Law," Economics Letters, Elsevier, vol. 192(C).
    2. Katherine M. Anderson & Kevin Dayaratna & Drew Gonshorowski & Steven J. Miller, 2022. "A New Benford Test for Clustered Data with Applications to American Elections," Stats, MDPI, vol. 5(3), pages 1-15, August.
    3. Ananyev, Maxim & Poyker, Michael, 2022. "Do dictators signal strength with electoral fraud?," European Journal of Political Economy, Elsevier, vol. 71(C).
    4. Juan Fernández-Gracia & Lucas Lacasa, 2018. "Bipartisanship Breakdown, Functional Networks, and Forensic Analysis in Spanish 2015 and 2016 National Elections," Complexity, Hindawi, vol. 2018, pages 1-23, January.
    5. Christoph Koenig, 2024. "With a Little Help From the Crowd: Estimating Election Fraud with Forensic Methods," CEIS Research Paper 584, Tor Vergata University, CEIS, revised 28 Oct 2024.
    6. Roy Cerqueti & Claudio Lupi, 2021. "Some New Tests of Conformity with Benford’s Law," Stats, MDPI, vol. 4(3), pages 1-17, September.
    7. Montag, Josef, 2017. "Identifying odometer fraud in used car market data," Transport Policy, Elsevier, vol. 60(C), pages 10-23.
    8. Ausloos, Marcel & Ficcadenti, Valerio & Dhesi, Gurjeet & Shakeel, Muhammad, 2021. "Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    9. Arno Berger & Theodore P. Hill, 2021. "The mathematics of Benford’s law: a primer," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 779-795, September.
    10. Arezzo, Maria Felice & Cerqueti, Roy, 2023. "A Benford’s Law view of inspections’ reasonability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    11. M Lesperance & W J Reed & M A Stephens & C Tsao & B Wilton, 2016. "Assessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    12. Lucio Barabesi & Andrea Cerioli & Domenico Perrotta, 2021. "Forum on Benford’s law and statistical methods for the detection of frauds," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 767-778, September.
    13. Bogdan Vasile Ileanu & Marcel Ausloos & Claudiu Herteliu & Marian Pompiliu Cristescu, 2019. "Intriguing behavior when testing the impact of quotation marks usage in Google search results," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2507-2519, September.
    14. Bernhard Rauch & Max G�ttsche & Stephan Langenegger, 2014. "Detecting Problems in Military Expenditure Data Using Digital Analysis," Defence and Peace Economics, Taylor & Francis Journals, vol. 25(2), pages 97-111, April.
    15. Cerqueti, Roy & Maggi, Mario, 2021. "Data validity and statistical conformity with Benford’s Law," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Gamermann, Daniel & Antunes, Felipe Leite, 2018. "Statistical analysis of Brazilian electoral campaigns via Benford’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 171-188.
    17. Madeleine Farris & Noah Luntzlara & Steven J. Miller & Lily Shao & Mengxi Wang, 2021. "Recurrence relations and Benford’s law," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 797-817, September.
    18. Arno Berger & Chuang Xu, 2019. "Best Finite Approximations of Benford’s Law," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1525-1553, September.
    19. Don Lemons & Nathan Lemons & William Peter, 2021. "First Digit Oscillations," Stats, MDPI, vol. 4(3), pages 1-7, July.
    20. Barabesi, Lucio & Pratelli, Luca, 2020. "On the Generalized Benford law," Statistics & Probability Letters, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s037843712200766x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.