IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150369.html
   My bibliography  Save this article

Improving Protein Expression Prediction Using Extra Features and Ensemble Averaging

Author

Listed:
  • Armando Fernandes
  • Susana Vinga

Abstract

The article focus is the improvement of machine learning models capable of predicting protein expression levels based on their codon encoding. Support vector regression (SVR) and partial least squares (PLS) were used to create the models. SVR yields predictions that surpass those of PLS. It is shown that it is possible to improve the models predictive ability by using two more input features, codon identification number and codon count, besides the already used codon bias and minimum free energy. In addition, applying ensemble averaging to the SVR or PLS models also improves the results even further. The present work motivates the test of different ensembles and features with the aim of improving the prediction models whose correlation coefficients are still far from perfect. These results are relevant for the optimization of codon usage and enhancement of protein expression levels in synthetic biology problems.

Suggested Citation

  • Armando Fernandes & Susana Vinga, 2016. "Improving Protein Expression Prediction Using Extra Features and Ensemble Averaging," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0150369
    DOI: 10.1371/journal.pone.0150369
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150369
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150369&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Welch & Sridhar Govindarajan & Jon E Ness & Alan Villalobos & Austin Gurney & Jeremy Minshull & Claes Gustafsson, 2009. "Design Parameters to Control Synthetic Gene Expression in Escherichia coli," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-10, September.
    2. Thomas F Clarke IV & Patricia L Clark, 2008. "Rare Codons Cluster," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-5, October.
    3. Geman Donald & d'Avignon Christian & Naiman Daniel Q. & Winslow Raimond L., 2004. "Classifying Gene Expression Profiles from Pairwise mRNA Comparisons," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    2. Alexey A Gritsenko & Marc Hulsman & Marcel J T Reinders & Dick de Ridder, 2015. "Unbiased Quantitative Models of Protein Translation Derived from Ribosome Profiling Data," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    3. Pingzhao Hu & Xinchen Wang & Jack J Haitsma & Suleiman Furmli & Hussain Masoom & Mingyao Liu & Yumiko Imai & Arthur S Slutsky & Joseph Beyene & Celia M T Greenwood & Claudia dos Santos, 2012. "Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    4. Parker Hilary S. & Leek Jeffrey T., 2012. "The practical effect of batch on genomic prediction," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-22, April.
    5. Yang, Tae Young, 2009. "Simple Bayesian binary framework for discovering significant genes and classifying cancer diagnosis," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1743-1754, March.
    6. Yang Sitan & Naiman Daniel Q., 2014. "Multiclass cancer classification based on gene expression comparison," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 477-496, August.
    7. Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.