IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150027.html
   My bibliography  Save this article

Heavy-Tailed Fluctuations in the Spiking Output Intensity of Semiconductor Lasers with Optical Feedback

Author

Listed:
  • Boon Leong Lan
  • Cristina Masoller

Abstract

Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs) of semiconductor lasers with optical feedback. In this regime, the laser output intensity is characterized by abrupt and apparently random dropouts. The statistical analysis of the inter-dropout-intervals (IDIs) has provided many useful insights into the underlying dynamics. However, the presence of large temporal fluctuations in the IDI sequence has not yet been investigated. Here, by applying fluctuation analysis we show that the experimental distribution of IDI fluctuations is heavy-tailed, and specifically, is well-modeled by a non-Gaussian stable distribution. We find a good qualitative agreement with simulations of the Lang-Kobayashi model. Moreover, we uncover a transition from a less-heavy-tailed state at low pump current to a more-heavy-tailed state at higher pump current. Our results indicate that fluctuation analysis can be a useful tool for investigating the output signals of complex optical systems; it can be used for detecting underlying regime shifts, for model validation and parameter estimation.

Suggested Citation

  • Boon Leong Lan & Cristina Masoller, 2016. "Heavy-Tailed Fluctuations in the Spiking Output Intensity of Semiconductor Lasers with Optical Feedback," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-10, February.
  • Handle: RePEc:plo:pone00:0150027
    DOI: 10.1371/journal.pone.0150027
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150027
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150027&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Plerou, V, 2000. "Scale invariance and universality of economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 31-41.
    2. Plerou, Vasiliki & Gopikrishnan, Parameswaran & Rosenow, Bernd & Amaral, Luis A.N. & Stanley, H.Eugene, 2000. "Econophysics: financial time series from a statistical physics point of view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 279(1), pages 443-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    2. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    3. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    4. Cem Çağrı Dönmez & Abdulkadir Atalan, 2019. "Developing Statistical Optimization Models for Urban Competitiveness Index: Under the Boundaries of Econophysics Approach," Complexity, Hindawi, vol. 2019, pages 1-11, November.
    5. Patrice Abry & Yannick Malevergne & Herwig Wendt & Marc Senneret & Laurent Jaffrès & Blaise Liaustrat, 2019. "Shuffling for understanding multifractality, application to asset price time series," Post-Print hal-02361738, HAL.
    6. Yuriy Mishchenko, 2014. "Oscillations in Rational Economies," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-6, February.
    7. Vladik Kreinovich & Monchaya Chiangpradit & Wararit Panichkitkosolkul, 2012. "Efficient algorithms for heavy-tail analysis under interval uncertainty," Annals of Operations Research, Springer, vol. 195(1), pages 73-96, May.
    8. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    9. Yang, Guo-Hui & Zhong, Guang-Yan & Wang, Li-Ya & Xie, Zu-Guang & Li, Jiang-Cheng, 2024. "A hybrid forecasting framework based on MCS and machine learning for higher dimensional and unbalanced systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    10. Pierpaolo Andriani & Bill McKelvey, 2009. "Perspective ---From Gaussian to Paretian Thinking: Causes and Implications of Power Laws in Organizations," Organization Science, INFORMS, vol. 20(6), pages 1053-1071, December.
    11. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.
    12. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    13. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    14. Leontitsis, Alexandros & Vorlow, Constantinos E., 2006. "Accounting for outliers and calendar effects in surrogate simulations of stock return sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 522-530.
    15. Niu, Hongli & Wang, Jun, 2013. "Complex dynamic behaviors of oriented percolation-based financial time series and Hang Seng index," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 36-44.
    16. Wu, Zhenyu & Shang, Pengjian & Xiong, Hui, 2018. "An improvement of the measurement of time series irreversibility with visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 370-378.
    17. Haug, Espen Gaarder & Taleb, Nassim Nicholas, 2011. "Option traders use (very) sophisticated heuristics, never the Black-Scholes-Merton formula," Journal of Economic Behavior & Organization, Elsevier, vol. 77(2), pages 97-106, February.
    18. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
    19. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    20. Henriques, M.V.C. & Leite, F.E.A. & Andrade, R.F.S. & Andrade, J.S. & Lucena, L.S. & Neto, M. Lucena, 2015. "Improving the analysis of well-logs by wavelet cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 130-140.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.