IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0148078.html
   My bibliography  Save this article

Identifying Patients with Bacteremia in Community-Hospital Emergency Rooms: A Retrospective Cohort Study

Author

Listed:
  • Taro Takeshima
  • Yosuke Yamamoto
  • Yoshinori Noguchi
  • Nobuyuki Maki
  • Koichiro Gibo
  • Yukio Tsugihashi
  • Asako Doi
  • Shingo Fukuma
  • Shin Yamazaki
  • Eiji Kajii
  • Shunichi Fukuhara

Abstract

Objectives: (1) To develop a clinical prediction rule to identify patients with bacteremia, using only information that is readily available in the emergency room (ER) of community hospitals, and (2) to test the validity of that rule with a separate, independent set of data. Design: Multicenter retrospective cohort study. Setting: To derive the clinical prediction rule we used data from 3 community hospitals in Japan (derivation). We tested the rule using data from one other community hospital (validation), which was not among the three “derivation” hospitals. Participants: Adults (age ≥ 16 years old) who had undergone blood-culture testing while in the ER between April 2011 and March 2012. For the derivation data, n = 1515 (randomly sampled from 7026 patients), and for the validation data n = 467 (from 823 patients). Analysis: We analyzed 28 candidate predictors of bacteremia, including demographic data, signs and symptoms, comorbid conditions, and basic laboratory data. Chi-square tests and multiple logistic regression were used to derive an integer risk score (the “ID-BactER” score). Sensitivity, specificity, likelihood ratios, and the area under the receiver operating characteristic curve (i.e., the AUC) were computed. Results: There were 241 cases of bacteremia in the derivation data. Eleven candidate predictors were used in the ID-BactER score: age, chills, vomiting, mental status, temperature, systolic blood pressure, abdominal sign, white blood-cell count, platelets, blood urea nitrogen, and C-reactive protein. The AUCs was 0.80 (derivation) and 0.74 (validation). For ID-BactER scores ≥ 2, the sensitivities for derivation and validation data were 98% and 97%, and specificities were 20% and 14%, respectively. Conclusions: The ID-BactER score can be computed from information that is readily available in the ERs of community hospitals. Future studies should focus on developing a score with a higher specificity while maintaining the desired sensitivity.

Suggested Citation

  • Taro Takeshima & Yosuke Yamamoto & Yoshinori Noguchi & Nobuyuki Maki & Koichiro Gibo & Yukio Tsugihashi & Asako Doi & Shingo Fukuma & Shin Yamazaki & Eiji Kajii & Shunichi Fukuhara, 2016. "Identifying Patients with Bacteremia in Community-Hospital Emergency Rooms: A Retrospective Cohort Study," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0148078
    DOI: 10.1371/journal.pone.0148078
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148078
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0148078&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0148078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Walter Bouwmeester & Nicolaas P A Zuithoff & Susan Mallett & Mirjam I Geerlings & Yvonne Vergouwe & Ewout W Steyerberg & Douglas G Altman & Karel G M Moons, 2012. "Reporting and Methods in Clinical Prediction Research: A Systematic Review," PLOS Medicine, Public Library of Science, vol. 9(5), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taku Harada & Yukinori Harada & Kohei Morinaga & Takanobu Hirosawa & Taro Shimizu, 2022. "Bandemia as an Early Predictive Marker of Bacteremia: A Retrospective Cohort Study," IJERPH, MDPI, vol. 19(4), pages 1-8, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Van Calster & Andrew J. Vickers, 2015. "Calibration of Risk Prediction Models," Medical Decision Making, , vol. 35(2), pages 162-169, February.
    2. Thomas P A Debray & Karel G M Moons & Ghada Mohammed Abdallah Abo-Zaid & Hendrik Koffijberg & Richard David Riley, 2013. "Individual Participant Data Meta-Analysis for a Binary Outcome: One-Stage or Two-Stage?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    3. Ben Van Calster & Ewout W. Steyerberg & Ralph B. D’Agostino Sr & Michael J. Pencina, 2014. "Sensitivity and Specificity Can Change in Opposite Directions When New Predictive Markers Are Added to Risk Models," Medical Decision Making, , vol. 34(4), pages 513-522, May.
    4. Helder Novais Bastos & Nuno S Osório & António Gil Castro & Angélica Ramos & Teresa Carvalho & Leonor Meira & David Araújo & Leonor Almeida & Rita Boaventura & Patrícia Fragata & Catarina Chaves & Pat, 2016. "A Prediction Rule to Stratify Mortality Risk of Patients with Pulmonary Tuberculosis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-14, September.
    5. Paul Bach & Christine Wallisch & Nadja Klein & Lorena Hafermann & Willi Sauerbrei & Ewout W Steyerberg & Georg Heinze & Geraldine Rauch & for topic group 2 of the STRATOS initiative, 2020. "Systematic review of education and practical guidance on regression modeling for medical researchers who lack a strong statistical background: Study protocol," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-10, December.
    6. Michael Lebenbaum & Osvaldo Espin-Garcia & Yi Li & Laura C Rosella, 2018. "Development and validation of a population based risk algorithm for obesity: The Obesity Population Risk Tool (OPoRT)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
    7. Igor O Korolev & Laura L Symonds & Andrea C Bozoki & Alzheimer's Disease Neuroimaging Initiative, 2016. "Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
    8. Marta Morales-Puerto & María Ruiz-Díaz & Marta Aranda-Gallardo & José Miguel Morales-Asencio & Purificación Alcalá-Gutiérrez & José Antonio Rodríguez-Montalvo & Álvaro León-Campos & Silvia García-Mayo, 2022. "Development of a Clinical Prediction Rule for Adverse Events in Multimorbid Patients in Emergency and Hospitalisation," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    9. John H Wasson & Lynn Ho & Laura Soloway & L Gordon Moore, 2018. "Validation of the What Matters Index: A brief, patient-reported index that guides care for chronic conditions and can substitute for computer-generated risk models," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0148078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.