IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0147830.html
   My bibliography  Save this article

Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization

Author

Listed:
  • Milad Adibi
  • Saiko Yoshida
  • Dolf Weijers
  • Christian Fleck

Abstract

Plants have the ability to continously generate new organs by maintaining populations of stem cells throught their lives. The shoot apical meristem (SAM) provides a stable environment for the maintenance of stem cells. All cells inside the SAM divide, yet boundaries and patterns are maintained. Experimental evidence indicates that patterning is independent of cell lineage, thus a dynamic self-regulatory mechanism is required. A pivotal role in the organization of the SAM is played by the WUSCHEL gene (WUS). An important question in this regard is that how WUS expression is positioned in the SAM via a cell-lineage independent signaling mechanism. In this study we demonstrate via mathematical modeling that a combination of an inhibitor of the Cytokinin (CK) receptor, Arabidopsis histidine kinase 4 (AHK4) and two morphogens originating from the top cell layer, can plausibly account for the cell lineage-independent centering of WUS expression within SAM. Furthermore, our laser ablation and microsurgical experiments support the hypothesis that patterning in SAM occurs at the level of CK reception and signaling. The model suggests that the interplay between CK signaling, WUS/CLV feedback loop and boundary signals can account for positioning of the WUS expression, and provides directions for further experimental investigation.

Suggested Citation

  • Milad Adibi & Saiko Yoshida & Dolf Weijers & Christian Fleck, 2016. "Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-28, February.
  • Handle: RePEc:plo:pone00:0147830
    DOI: 10.1371/journal.pone.0147830
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147830
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0147830&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0147830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ildoo Hwang & Jen Sheen, 2001. "Two-component circuitry in Arabidopsis cytokinin signal transduction," Nature, Nature, vol. 413(6854), pages 383-389, September.
    2. Andrea Leibfried & Jennifer P. C. To & Wolfgang Busch & Sandra Stehling & Andreas Kehle & Monika Demar & Joseph J. Kieber & Jan U. Lohmann, 2005. "WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators," Nature, Nature, vol. 438(7071), pages 1172-1175, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Zeng & Xin’Ai Zhao & Zhe Liang & Inés Hidalgo & Michael Gebert & Pengfei Fan & Christian Wenzl & Sebastian G. Gornik & Jan U. Lohmann, 2023. "Nitric oxide controls shoot meristem activity via regulation of DNA methylation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Mitchell P Levesque & Teva Vernoux & Wolfgang Busch & Hongchang Cui & Jean Y Wang & Ikram Blilou & Hala Hassan & Keiji Nakajima & Noritaka Matsumoto & Jan U Lohmann & Ben Scheres & Philip N Benfey, 2006. "Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, May.
    3. Enric Bertran Garcia de Olalla & Martina Cerise & Gabriel Rodríguez-Maroto & Pau Casanova-Ferrer & Alice Vayssières & Edouard Severing & Yaiza López Sampere & Kang Wang & Sabine Schäfer & Pau Formosa-, 2024. "Coordination of shoot apical meristem shape and identity by APETALA2 during floral transition in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Wenpin Hou & Takeyuki Tamura & Wai-Ki Ching & Tatsuya Akutsu, 2016. "Finding And Analyzing The Minimum Set Of Driver Nodes In Control Of Boolean Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-32, May.
    5. Guicai Cui & Yu Li & Leiying Zheng & Caroline Smith & Michael W. Bevan & Yunhai Li, 2024. "The peptidase DA1 cleaves and destabilizes WUSCHEL to control shoot apical meristem size," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Tim Hohm & Eckart Zitzler & Rüdiger Simon, 2010. "A Dynamic Model for Stem Cell Homeostasis and Patterning in Arabidopsis Meristems," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-9, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0147830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.