IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v413y2001i6854d10.1038_35096500.html
   My bibliography  Save this article

Two-component circuitry in Arabidopsis cytokinin signal transduction

Author

Listed:
  • Ildoo Hwang

    (Massachusetts General Hospital, Harvard Medical School)

  • Jen Sheen

    (Massachusetts General Hospital, Harvard Medical School)

Abstract

Cytokinins are essential plant hormones that are involved in shoot meristem and leaf formation, cell division, chloroplast biogenesis and senescence. Although hybrid histidine protein kinases have been implicated in cytokinin perception in Arabidopsis, the action of histidine protein kinase receptors and the downstream signalling pathway has not been elucidated to date. Here we identify a eukaryotic two-component signalling circuit that initiates cytokinin signalling through distinct hybrid histidine protein kinase activities at the plasma membrane. Histidine phosphotransmitters act as signalling shuttles between the cytoplasm and nucleus in a cytokinin-dependent manner. The short signalling circuit reaches the nuclear target genes by enabling nuclear response regulators ARR1, ARR2 and ARR10 as transcription activators. The cytokinin-inducible ARR4, ARR5, ARR6 and ARR7 genes encode transcription repressors that mediate a negative feedback loop in cytokinin signalling. Ectopic expression in transgenic Arabidopsis of ARR2, the rate-limiting factor in the response to cytokinin, is sufficient to mimic cytokinin in promoting shoot meristem proliferation and leaf differentiation, and in delaying leaf senescence.

Suggested Citation

  • Ildoo Hwang & Jen Sheen, 2001. "Two-component circuitry in Arabidopsis cytokinin signal transduction," Nature, Nature, vol. 413(6854), pages 383-389, September.
  • Handle: RePEc:nat:nature:v:413:y:2001:i:6854:d:10.1038_35096500
    DOI: 10.1038/35096500
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35096500
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35096500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:413:y:2001:i:6854:d:10.1038_35096500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.