IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0146727.html
   My bibliography  Save this article

CD-Based Indices for Link Prediction in Complex Network

Author

Listed:
  • Tao Wang
  • Hongjue Wang
  • Xiaoxia Wang

Abstract

Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks.

Suggested Citation

  • Tao Wang & Hongjue Wang & Xiaoxia Wang, 2016. "CD-Based Indices for Link Prediction in Complex Network," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0146727
    DOI: 10.1371/journal.pone.0146727
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146727
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0146727&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0146727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sherkat, Ehsan & Rahgozar, Maseud & Asadpour, Masoud, 2015. "Structural link prediction based on ant colony approach in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 80-94.
    2. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    3. Ding, Jingyi & Jiao, Licheng & Wu, Jianshe & Hou, Yunting & Qi, Yutao, 2015. "Prediction of missing links based on multi-resolution community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 76-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hongjue, 2019. "An universal algorithm for source location in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 620-630.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Feng, Sida & Li, Huajiao & Qi, Yabin & Guan, Qing & Wen, Shaobo, 2017. "Who will build new trade relations? Finding potential relations in international liquefied natural gas trade," Energy, Elsevier, vol. 141(C), pages 1226-1238.
    3. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    4. Guan, Qing & An, Haizhong & Gao, Xiangyun & Huang, Shupei & Li, Huajiao, 2016. "Estimating potential trade links in the international crude oil trade: A link prediction approach," Energy, Elsevier, vol. 102(C), pages 406-415.
    5. Jiao, Yang & Wu, Jianshe & Xiang, Peng & Wang, Fang, 2023. "Link prediction from fusion information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    6. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Liu, Yangyang & Zhao, Chengli & Wang, Xiaojie & Huang, Qiangjuan & Zhang, Xue & Yi, Dongyun, 2016. "The degree-related clustering coefficient and its application to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 24-33.
    8. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    9. Liu, Sen & Dong, Zhiliang & Ding, Chao & Wang, Tian & Zhang, Yichi, 2020. "Do you need cobalt ore? Estimating potential trade relations through link prediction," Resources Policy, Elsevier, vol. 66(C).
    10. Guan, Qing & An, Haizhong, 2017. "The exploration on the trade preferences of cooperation partners in four energy commodities’ international trade: Crude oil, coal, natural gas and photovoltaic," Applied Energy, Elsevier, vol. 203(C), pages 154-163.
    11. Liu, sen & Dong, Zhiliang, 2019. "Who will trade bauxite with whom? Finding potential links through link prediction," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    12. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    13. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    14. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    15. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    16. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    17. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    18. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    20. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0146727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.