IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0143521.html
   My bibliography  Save this article

Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain

Author

Listed:
  • Manuel Arias-Rodil
  • Fernando Castedo-Dorado
  • Asunción Cámara-Obregón
  • Ulises Diéguez-Aranda

Abstract

Stem taper data are usually hierarchical (several measurements per tree, and several trees per plot), making application of a multilevel mixed-effects modelling approach essential. However, correlation between trees in the same plot/stand has often been ignored in previous studies. Fitting and calibration of a variable-exponent stem taper function were conducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.) stands in NW Spain. In the fitting step, the tree level explained much more variability than the plot level, and therefore calibration at plot level was omitted. Several stem heights were evaluated for measurement of the additional diameter needed for calibration at tree level. Calibration with an additional diameter measured at between 40 and 60% of total tree height showed the greatest improvement in volume and diameter predictions. If additional diameter measurement is not available, the fixed-effects model fitted by the ordinary least squares technique should be used. Finally, we also evaluated how the expansion of parameters with random effects affects the stem taper prediction, as we consider this a key question when applying the mixed-effects modelling approach to taper equations. The results showed that correlation between random effects should be taken into account when assessing the influence of random effects in stem taper prediction.

Suggested Citation

  • Manuel Arias-Rodil & Fernando Castedo-Dorado & Asunción Cámara-Obregón & Ulises Diéguez-Aranda, 2015. "Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0143521
    DOI: 10.1371/journal.pone.0143521
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143521
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0143521&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0143521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wolfinger, Russell D. & Xihong Lin, 1997. "Two Taylor-series approximation methods for nonlinear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 465-490, September.
    2. Timothy G. Gregoire & Oliver Schabenberger & Fanzhi Kong, 2000. "Prediction from an Integrated Regression Equation: A Forestry Application," Biometrics, The International Biometric Society, vol. 56(2), pages 414-419, June.
    3. Hao Xu & Yujun Sun & Xinjie Wang & Yao Fu & Yunfei Dong & Ying Li, 2014. "Nonlinear Mixed-Effects (NLME) Diameter Growth Models for Individual China-Fir (Cunninghamia lanceolata) Trees in Southeast China," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    2. Kumbhakar, Subal C. & Tsionas, Mike G., 2021. "Dissections of input and output efficiency: A generalized stochastic frontier model," International Journal of Production Economics, Elsevier, vol. 232(C).
    3. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    4. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "Measuring technical and allocative inefficiency in the translog cost system: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 126(2), pages 355-384, June.
    5. Daniel B. Hall & Michael Clutter, 2004. "Multivariate Multilevel Nonlinear Mixed Effects Models for Timber Yield Predictions," Biometrics, The International Biometric Society, vol. 60(1), pages 16-24, March.
    6. Pires, Sandra Aguiar de Oliveira & de Mendonça, Adriano Ribeiro & da Silva, Gilson Fernandes & d'Oliveira, Marcus Vinícius Neves & de Oliveira, Luís Claudio & Silva, Jeferson Pereira Martins & da Silv, 2021. "Growth modeling of Carapa guianensis and Tetragastris altissima for improved management in native forests in the Amazon," Ecological Modelling, Elsevier, vol. 456(C).
    7. Yan-qiong Li & Xiang-wen Deng & Zhi-hong Huang & Wen-hua Xiang & Wen-de Yan & Pi-feng Lei & Xiao-lu Zhou & Chang-hui Peng, 2015. "Development and Evaluation of Models for the Relationship between Tree Height and Diameter at Breast Height for Chinese-Fir Plantations in Subtropical China," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    8. R. H. Rieger & C. R. Weinberg, 2009. "Testing for violations of the homogeneity needed for conditional logistic regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1147-1157.
    9. Ollier, Edouard, 2022. "Fast selection of nonlinear mixed effect models using penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    10. Wan-Lun Wang & Yu-Chen Yang & Tsung-I Lin, 2024. "Extending finite mixtures of nonlinear mixed-effects models with covariate-dependent mixing weights," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 271-307, June.
    11. Lang Li & Xihong Lin & Morton B. Brown & Suneel Gupta & Kyung-Hoon Lee, 2004. "A Population Pharmacokinetic Model with Time-Dependent Covariates Measured with Errors," Biometrics, The International Biometric Society, vol. 60(2), pages 451-460, June.
    12. Fu, Liyong & Wang, Mingliang & Lei, Yuancai & Tang, Shouzheng, 2014. "Parameter estimation of two-level nonlinear mixed effects models using first order conditional linearization and the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 173-183.
    13. Pedersen, M.W. & Berg, C.W. & Thygesen, U.H. & Nielsen, A. & Madsen, H., 2011. "Estimation methods for nonlinear state-space models in ecology," Ecological Modelling, Elsevier, vol. 222(8), pages 1394-1400.
    14. Noh, Maengseok & Lee, Youngjo, 2008. "Hierarchical-likelihood approach for nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3517-3527, March.
    15. Mei Guangyi & Sun Yujun & Xu Hao & Sergio de-Miguel, 2015. "A Mixed-Effects Model with Different Strategies for Modeling Volume in Cunninghamia lanceolata Plantations," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-14, October.
    16. Lachos, Victor H. & Castro, Luis M. & Dey, Dipak K., 2013. "Bayesian inference in nonlinear mixed-effects models using normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 237-252.
    17. Hartford, Alan & Davidian, Marie, 2000. "Consequences of misspecifying assumptions in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 34(2), pages 139-164, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0143521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.