IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0143051.html
   My bibliography  Save this article

Situations in 140 Characters: Assessing Real-World Situations on Twitter

Author

Listed:
  • David G Serfass
  • Ryne A Sherman

Abstract

Over 20 million Tweets were used to study the psychological characteristics of real-world situations over the course of two weeks. Models for automatically and accurately scoring individual Tweets on the DIAMONDS dimensions of situations were developed. Stable daily and weekly fluctuations in the situations that people experience were identified. Predicted temporal trends were found, providing validation for this new method of situation assessment. On weekdays, Duty peaks in the midmorning and declines steadily thereafter while Sociality peeks in the evening. Negativity is highest during the workweek and lowest on the weekends. pOsitivity shows the opposite pattern. Additionally, gender and locational differences in the situations shared on Twitter are explored. Females share both more emotionally charged (pOsitive and Negative) situations, while no differences were found in the amount of Duty experienced by males and females. Differences in the situations shared from Rural and Urban areas were not found. Future applications of assessing situations using social media are discussed.

Suggested Citation

  • David G Serfass & Ryne A Sherman, 2015. "Situations in 140 Characters: Assessing Real-World Situations on Twitter," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0143051
    DOI: 10.1371/journal.pone.0143051
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143051
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0143051&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0143051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. H Andrew Schwartz & Johannes C Eichstaedt & Margaret L Kern & Lukasz Dziurzynski & Stephanie M Ramones & Megha Agrawal & Achal Shah & Michal Kosinski & David Stillwell & Martin E P Seligman & Lyle H U, 2013. "Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. A. Piña-García & J. Mario Siqueiros-García & E. Robles-Belmont & Gustavo Carreón & Carlos Gershenson & Julio Amador Díaz López, 2018. "From neuroscience to computer science: a topical approach on Twitter," Journal of Computational Social Science, Springer, vol. 1(1), pages 187-208, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    6. Jean M. Twenge & Hannah VanLandingham & W. Keith Campbell, 2017. "The Seven Words You Can Never Say on Television: Increases in the Use of Swear Words in American Books, 1950-2008," SAGE Open, , vol. 7(3), pages 21582440177, August.
    7. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    8. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    9. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    10. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    12. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    13. Gallus, Jana & Bhatia, Sudeep, 2020. "Gender, power and emotions in the collaborative production of knowledge: A large-scale analysis of Wikipedia editor conversations," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 115-130.
    14. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    15. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    16. Liang Xu & Min Xu & Zehua Jiang & Xin Wen & Yishan Liu & Zaoyi Sun & Hongting Li & Xiuying Qian, 2023. "How have music emotions been described in Google books? Historical trends and corpus differences," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    17. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    18. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    19. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    20. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0143051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.