IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0140950.html
   My bibliography  Save this article

A Design Pattern for Decentralised Decision Making

Author

Listed:
  • Andreagiovanni Reina
  • Gabriele Valentini
  • Cristian Fernández-Oto
  • Marco Dorigo
  • Vito Trianni

Abstract

The engineering of large-scale decentralised systems requires sound methodologies to guarantee the attainment of the desired macroscopic system-level behaviour given the microscopic individual-level implementation. While a general-purpose methodology is currently out of reach, specific solutions can be given to broad classes of problems by means of well-conceived design patterns. We propose a design pattern for collective decision making grounded on experimental/theoretical studies of the nest-site selection behaviour observed in honeybee swarms (Apis mellifera). The way in which honeybee swarms arrive at consensus is fairly well-understood at the macroscopic level. We provide formal guidelines for the microscopic implementation of collective decisions to quantitatively match the macroscopic predictions. We discuss implementation strategies based on both homogeneous and heterogeneous multiagent systems, and we provide means to deal with spatial and topological factors that have a bearing on the micro-macro link. Finally, we exploit the design pattern in two case studies that showcase the viability of the approach. Besides engineering, such a design pattern can prove useful for a deeper understanding of decision making in natural systems thanks to the inclusion of individual heterogeneities and spatial factors, which are often disregarded in theoretical modelling.

Suggested Citation

  • Andreagiovanni Reina & Gabriele Valentini & Cristian Fernández-Oto & Marco Dorigo & Vito Trianni, 2015. "A Design Pattern for Decentralised Decision Making," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-18, October.
  • Handle: RePEc:plo:pone00:0140950
    DOI: 10.1371/journal.pone.0140950
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140950
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0140950&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0140950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keke Huang & Tao Wang & Yuan Cheng & Xiaoping Zheng, 2015. "Effect of Heterogeneous Investments on the Evolution of Cooperation in Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-10, March.
    2. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    3. Elva J H Robinson & Nigel R Franks & Samuel Ellis & Saki Okuda & James A R Marshall, 2011. "A Simple Threshold Rule Is Sufficient to Explain Sophisticated Collective Decision-Making," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-11, May.
    4. Matthias Vigelius & Bernd Meyer & Geoffrey Pascoe, 2014. "Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Wario & Benjamin Wild & Raúl Rojas & Tim Landgraf, 2017. "Automatic detection and decoding of honey bee waggle dances," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    2. James A R Marshall & Andreagiovanni Reina & Thomas Bose, 2019. "Multiscale Modelling Tool: Mathematical modelling of collective behaviour without the maths," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Mohsen Mirbagheri & Ata Ollah Rafiei Atani & Mohammadreza Parsanejad, 2023. "The Effect of Collective Decision-Making on Productivity: A Structural Equation Modeling," SAGE Open, , vol. 13(4), pages 21582440231, December.
    2. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    3. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    4. Shuhua Chang & Xinyu Wang & Zheng Wang, 2015. "Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-29, September.
    5. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    6. Yuan Cheng & Yanbo Xue & Meng Chang, 2019. "Career Choice as an Extended Spatial Evolutionary Public Goods Game," Papers 1907.13296, arXiv.org.
    7. Xie, Yunya & Zhang, Shuhua & Zhang, Zhipeng & Bu, Hongyu, 2020. "Impact of binary social status with hierarchical punishment on the evolution of cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    9. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    10. Bo Zhang & Jianping Yuan & J. F. Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Global Feedback Control for Coordinated Linear Switched Reluctance Machines Network with Full-State Observation and Internal Model Compensation," Energies, MDPI, vol. 10(12), pages 1-19, December.
    11. Shen, Chen & Li, Xiaoping & Shi, Lei & Deng, Zhenghong, 2017. "Asymmetric evaluation promotes cooperation in network population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 391-397.
    12. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    13. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    15. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    16. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    17. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    18. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    19. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    20. Askar, S.S. & Alnowibet, K., 2016. "Cooperation versus noncooperation: Cournot duopolistic game based on delay and time-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 580-584.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0140950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.