IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0138310.html
   My bibliography  Save this article

Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data

Author

Listed:
  • Jinpei Ou
  • Xiaoping Liu
  • Xia Li
  • Meifang Li
  • Wenkai Li

Abstract

Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

Suggested Citation

  • Jinpei Ou & Xiaoping Liu & Xia Li & Meifang Li & Wenkai Li, 2015. "Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0138310
    DOI: 10.1371/journal.pone.0138310
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138310
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0138310&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0138310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    2. David Wheeler & Kevin Ummel, 2008. "Calculating CARMA: Global Estimation of CO2 Emissions from the Power Sector," Working Papers 145, Center for Global Development.
    3. Raupach, M.R. & Rayner, P.J. & Paget, M., 2010. "Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions," Energy Policy, Elsevier, vol. 38(9), pages 4756-4764, September.
    4. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Xiangdong & Yuan, Ouyang & Xu, Zhao & Yin, Yanhui & Liu, Qian & Wu, Ling, 2021. "Did Zipf's Law hold for Chinese cities and why? Evidence from multi-source data," Land Use Policy, Elsevier, vol. 106(C).
    2. Sun, Yeran & Wang, Shaohua & Zhang, Xucai & Chan, Ting On & Wu, Wenjie, 2021. "Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data," Energy, Elsevier, vol. 226(C).
    3. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    4. Robert Duerler & Chunxiang Cao & Bo Xie & Zhibin Huang & Yiyu Chen & Kaimin Wang & Min Xu & Yilin Lu, 2023. "Cross Reference of GDP Decrease with Nighttime Light Data via Remote Sensing Diagnosis," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    5. Xueqi Wang & Shuo Wang & Gengyuan Liu & Ningyu Yan & Qing Yang & Bin Chen & Junhong Bai & Yan Zhang & Ginevra Virginia Lombardi, 2022. "Identification of Priority Areas for Improving Urban Ecological Carrying Capacity: Based on Supply–Demand Matching of Ecosystem Services," Land, MDPI, vol. 11(5), pages 1-24, May.
    6. Yohan Iddawela & Neil Lee & Andrés Rodríguez-Pose, 2021. "Quality of Sub-national Government and Regional Development in Africa," Journal of Development Studies, Taylor & Francis Journals, vol. 57(8), pages 1282-1302, August.
    7. Jesús Crespo Cuaresma & Olha Danylo & Steffen Fritz & Martin Hofer & Homi Kharas & Juan Carlos Laso Bayas, 2020. "What do we know about poverty in North Korea?," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-8, December.
    8. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    9. Zhao, Bingbing & Deng, Min & Lo, Siuming & Liu, Baoju, 2024. "Estimating built-up area carbon emissions through addressing regional development disparities with population and nighttime light data," Applied Energy, Elsevier, vol. 369(C).
    10. Ningcheng Wang & Yufan Liu & Jinzi Wang & Xingjian Qian & Xizhi Zhao & Jianping Wu & Bin Wu & Shenjun Yao & Lei Fang, 2019. "Investigating the Potential of Using POI and Nighttime Light Data to Map Urban Road Safety at the Micro-Level: A Case in Shanghai, China," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    11. Yue Zheng & Jinpei Ou & Guangzhao Chen & Xinxin Wu & Xiaoping Liu, 2022. "Mapping Building-Based Spatiotemporal Distributions of Carbon Dioxide Emission: A Case Study in England," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    12. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    13. Jeremy Proville & Daniel Zavala-Araiza & Gernot Wagner, 2017. "Night-time lights: A global, long term look at links to socio-economic trends," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-12, March.
    14. Luyao Wang & Hong Fan & Yankun Wang, 2018. "Estimation of consumption potentiality using VIIRS night-time light data," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    15. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Jose Miranda & Oscar A. Ishizawa & Hongrui Zhang, 2020. "Understanding the Impact Dynamics of Windstorms on Short-Term Economic Activity from Night Lights in Central America," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 657-698, October.
    2. Meng, Lina & Graus, Wina & Worrell, Ernst & Huang, Bo, 2014. "Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery: Methodological challenges and a ," Energy, Elsevier, vol. 71(C), pages 468-478.
    3. Tomohiro Oda & Rostyslav Bun & Vitaliy Kinakh & Petro Topylko & Mariia Halushchak & Gregg Marland & Thomas Lauvaux & Matthias Jonas & Shamil Maksyutov & Zbigniew Nahorski & Myroslava Lesiv & Olha Dany, 2019. "Errors and uncertainties in a gridded carbon dioxide emissions inventory," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1007-1050, August.
    4. Seiffert, Sebastian, 2015. "The Role of Economic Geography in Subnational African Development," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113186, Verein für Socialpolitik / German Economic Association.
    5. Corral, Leonardo R. & Schling, Maja, 2017. "The impact of shoreline stabilization on economic growth in small island developing states," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 210-228.
    6. Hayakawa, Kazunobu & Keola, Souknilanh & Silaphet, Korrakoun & Yamanouchi, Kenta, 2022. "Estimating the impacts of international bridges on foreign firm locations: a machine learning approach," IDE Discussion Papers 847, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    7. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    8. Beyer, Robert C.M. & Franco-Bedoya, Sebastian & Galdo, Virgilio, 2021. "Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity," World Development, Elsevier, vol. 140(C).
    9. Boslett, Andrew & Hill, Elaine & Ma, Lala & Zhang, Lujia, 2021. "Rural light pollution from shale gas development and associated sleep and subjective well-being," Resource and Energy Economics, Elsevier, vol. 64(C).
    10. Han, Yi & Wu, Mingqin, 2024. "Inter-regional barriers and economic growth: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    11. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    12. Yu Kun Wang & Li Zhang, 2022. "Tax Revenue, Night Lights and Underground Economy: Evidence from China," Journal of Tax Reform, Graduate School of Economics and Management, Ural Federal University, vol. 8(2), pages 186-198.
    13. Sumit Agarwal & Thomas Kigabo & Ms. Camelia Minoiu & Mr. Andrea F Presbitero & Andre Silva, 2018. "Financial Access Under the Microscope," IMF Working Papers 2018/208, International Monetary Fund.
    14. Julian Donaubauer & Peter Kannen & Frauke Steglich, 2022. "Foreign Direct Investment & Petty Corruption in Sub-Saharan Africa: An Empirical Analysis at the Local Level," Journal of Development Studies, Taylor & Francis Journals, vol. 58(1), pages 76-95, January.
    15. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Flückiger, Matthias & Ludwig, Markus, 2015. "Economic shocks in the fisheries sector and maritime piracy," Journal of Development Economics, Elsevier, vol. 114(C), pages 107-125.
    17. Andaleeb Rahman & Sumit Mishra, 2020. "Does Non-farm Income Affect Food Security? Evidence from India," Journal of Development Studies, Taylor & Francis Journals, vol. 56(6), pages 1190-1209, June.
    18. Menezes, Flavio & Figer, Vivian & Jardim, Fernanda & Medeiros, Pedro, 2022. "A near real-time economic activity tracker for the Brazilian economy during the COVID-19 pandemic," Economic Modelling, Elsevier, vol. 112(C).
    19. Bagavathinathan, Karan Singh & Chaurey, Ritam, 2020. "Workfare programs and children’s meals intake: Evidence from India," Food Policy, Elsevier, vol. 95(C).
    20. Thushyanthan Baskaran & Sonia Bhalotra & Brian Min & Yogesh Uppal, 2024. "Women legislators and economic performance," Journal of Economic Growth, Springer, vol. 29(2), pages 151-214, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0138310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.