IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0135731.html
   My bibliography  Save this article

A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary

Author

Listed:
  • Rachel L Spietz
  • Cheryl M Williams
  • Gabrielle Rocap
  • M Claire Horner-Devine

Abstract

Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (

Suggested Citation

  • Rachel L Spietz & Cheryl M Williams & Gabrielle Rocap & M Claire Horner-Devine, 2015. "A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
  • Handle: RePEc:plo:pone00:0135731
    DOI: 10.1371/journal.pone.0135731
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135731
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0135731&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0135731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Halicki, 2023. "Advanced Biological Oxidation of Domestic Sewage with the Use of Compost Beds in a Natural Treatment System for Wastewater," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    2. Yu Ding & Xiuxian Song & Xihua Cao & Liyan He & Shanshan Liu & Zhiming Yu, 2021. "Healthier Communities of Phytoplankton and Bacteria Achieved via the Application of Modified Clay in Shrimp Aquaculture Ponds," IJERPH, MDPI, vol. 18(21), pages 1-18, November.
    3. Kinga Zatoń-Sieczka & Elżbieta Bogusławska-Wąs & Przemysław Czerniejewski & Adam Brysiewicz & Adam Tański, 2022. "Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary," IJERPH, MDPI, vol. 19(23), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0135731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.