IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0134520.html
   My bibliography  Save this article

DNA Tetrominoes: The Construction of DNA Nanostructures Using Self-Organised Heterogeneous Deoxyribonucleic Acids Shapes

Author

Listed:
  • Hui San Ong
  • Mohd Syafiq Rahim
  • Mohd Firdaus-Raih
  • Effirul Ikhwan Ramlan

Abstract

The unique programmability of nucleic acids offers alternative in constructing excitable and functional nanostructures. This work introduces an autonomous protocol to construct DNA Tetris shapes (L-Shape, B-Shape, T-Shape and I-Shape) using modular DNA blocks. The protocol exploits the rich number of sequence combinations available from the nucleic acid alphabets, thus allowing for diversity to be applied in designing various DNA nanostructures. Instead of a deterministic set of sequences corresponding to a particular design, the protocol promotes a large pool of DNA shapes that can assemble to conform to any desired structures. By utilising evolutionary programming in the design stage, DNA blocks are subjected to processes such as sequence insertion, deletion and base shifting in order to enrich the diversity of the resulting shapes based on a set of cascading filters. The optimisation algorithm allows mutation to be exerted indefinitely on the candidate sequences until these sequences complied with all the four fitness criteria. Generated candidates from the protocol are in agreement with the filter cascades and thermodynamic simulation. Further validation using gel electrophoresis indicated the formation of the designed shapes. Thus, supporting the plausibility of constructing DNA nanostructures in a more hierarchical, modular, and interchangeable manner.

Suggested Citation

  • Hui San Ong & Mohd Syafiq Rahim & Mohd Firdaus-Raih & Effirul Ikhwan Ramlan, 2015. "DNA Tetrominoes: The Construction of DNA Nanostructures Using Self-Organised Heterogeneous Deoxyribonucleic Acids Shapes," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0134520
    DOI: 10.1371/journal.pone.0134520
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134520
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0134520&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0134520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William M. Shih & Joel D. Quispe & Gerald F. Joyce, 2004. "A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron," Nature, Nature, vol. 427(6975), pages 618-621, February.
    2. Yu He & Tao Ye & Min Su & Chuan Zhang & Alexander E. Ribbe & Wen Jiang & Chengde Mao, 2008. "Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra," Nature, Nature, vol. 452(7184), pages 198-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Chen & Xingfei Wei & Molly F. Parsons & Jiajia Guo & James L. Banal & Yinong Zhao & Madelyn N. Scott & Gabriela S. Schlau-Cohen & Rigoberto Hernandez & Mark Bathe, 2022. "Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Bharath Raj Madhanagopal & Hannah Talbot & Arlin Rodriguez & Jiss Maria Louis & Hana Zeghal & Sweta Vangaveti & Kaalak Reddy & Arun Richard Chandrasekaran, 2024. "The unusual structural properties and potential biological relevance of switchback DNA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Xiaojun Ding & Jing Chen & Gang Ye, 2024. "Supramolecular polynuclear clusters sustained cubic hydrogen bonded frameworks with octahedral cages for reversible photochromism," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shivendra Pandey & Daniel Johnson & Ryan Kaplan & Joseph Klobusicky & Govind Menon & David H Gracias, 2014. "Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    5. Guang Hu & Wen-Yuan Qiu & Arnout Ceulemans, 2011. "A New Euler's Formula for DNA Polyhedra," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-6, October.
    6. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0134520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.