IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0131704.html
   My bibliography  Save this article

Local Variation of Hashtag Spike Trains and Popularity in Twitter

Author

Listed:
  • Ceyda Sanlı
  • Renaud Lambiotte

Abstract

We draw a parallel between hashtag time series and neuron spike trains. In each case, the process presents complex dynamic patterns including temporal correlations, burstiness, and all other types of nonstationarity. We propose the adoption of the so-called local variation in order to uncover salient dynamical properties, while properly detrending for the time-dependent features of a signal. The methodology is tested on both real and randomized hashtag spike trains, and identifies that popular hashtags present regular and so less bursty behavior, suggesting its potential use for predicting online popularity in social media.

Suggested Citation

  • Ceyda Sanlı & Renaud Lambiotte, 2015. "Local Variation of Hashtag Spike Trains and Popularity in Twitter," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0131704
    DOI: 10.1371/journal.pone.0131704
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131704
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0131704&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0131704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kazutoshi Sasahara & Yoshito Hirata & Masashi Toyoda & Masaru Kitsuregawa & Kazuyuki Aihara, 2013. "Quantifying Collective Attention from Tweet Stream," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Picoli, Sergio & Bombo, Giorgio & Santos, Edenize S.D. & Deprá, Pedro P. & Mendes, Renio S., 2022. "Characterizing postural sway signals by the analysis of zero-crossing patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Leihan Zhang & Ke Xu & Jichang Zhao, 2017. "Sleeping beauties in meme diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 383-402, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    2. Shota Saito & Yoshito Hirata & Kazutoshi Sasahara & Hideyuki Suzuki, 2015. "Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    3. Margherita Vestoso, 2018. "The GDPR beyond Privacy: Data-Driven Challenges for Social Scientists, Legislators and Policy-Makers," Future Internet, MDPI, vol. 10(7), pages 1-11, July.
    4. Liu, Jian-Guo & Yang, Zhen-Hua & Li, Sheng-Nan & Yu, Chang-Rui, 2018. "A generative model for the collective attention of the Chinese stock market investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1175-1182.
    5. Shwartz-Asher, Daphna & Chun, Soon & Adam, Nabil R. & Snider, Keren LG., 2020. "Knowledge sharing behaviors in social media," Technology in Society, Elsevier, vol. 63(C).
    6. Binbin Ye & Padmaja Krishnan & Shiguo Jia, 2022. "Public Concern about Air Pollution and Related Health Outcomes on Social Media in China: An Analysis of Data from Sina Weibo (Chinese Twitter) and Air Monitoring Stations," IJERPH, MDPI, vol. 19(23), pages 1-21, December.
    7. Leihan Zhang & Ke Xu & Jichang Zhao, 2017. "Sleeping beauties in meme diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 383-402, July.
    8. Chan, Ho Fai & Bodiuzzman, Sohel Md & Torgler, Benno, 2020. "The power of social cues in the battle for attention: Evidence from an online platform for scholarly commentary," Journal of Informetrics, Elsevier, vol. 14(4).
    9. Vincenza Carchiolo & Alessandro Longheu & Michele Malgeri & Giuseppe Mangioni & Marialaura Previti, 2021. "Mutual Influence of Users Credibility and News Spreading in Online Social Networks," Future Internet, MDPI, vol. 13(5), pages 1-15, April.
    10. Nakano, Shuhei & Hirata, Yoshito & Iwayama, Koji & Aihara, Kazuyuki, 2015. "Intra-day response of foreign exchange markets after the Tohoku-Oki earthquake," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 203-214.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0131704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.