IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0129161.html
   My bibliography  Save this article

Beyond Benford's Law: Distinguishing Noise from Chaos

Author

Listed:
  • Qinglei Li
  • Zuntao Fu
  • Naiming Yuan

Abstract

Determinism and randomness are two inherent aspects of all physical processes. Time series from chaotic systems share several features identical with those generated from stochastic processes, which makes them almost undistinguishable. In this paper, a new method based on Benford's law is designed in order to distinguish noise from chaos by only information from the first digit of considered series. By applying this method to discrete data, we confirm that chaotic data indeed can be distinguished from noise data, quantitatively and clearly.

Suggested Citation

  • Qinglei Li & Zuntao Fu & Naiming Yuan, 2015. "Beyond Benford's Law: Distinguishing Noise from Chaos," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
  • Handle: RePEc:plo:pone00:0129161
    DOI: 10.1371/journal.pone.0129161
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129161
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0129161&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0129161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P.-M. Binder & R. M. Pipes, 2014. "How chaos forgets and remembers," Nature, Nature, vol. 510(7505), pages 343-344, June.
    2. Chih-hao Hsieh & Sarah M. Glaser & Andrew J. Lucas & George Sugihara, 2005. "Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean," Nature, Nature, vol. 435(7040), pages 336-340, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Whyman, G. & Ohtori, N. & Shulzinger, E. & Bormashenko, Ed., 2016. "Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 595-601.
    2. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Ausloos, Marcel & Castellano, Rosella & Cerqueti, Roy, 2016. "Regularities and discrepancies of credit default swaps: a data science approach through Benford's law," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 8-17.
    4. Alexandre Donizeti Alves & Horacio Hideki Yanasse & Nei Yoshihiro Soma, 2016. "An analysis of bibliometric indicators to JCR according to Benford’s law," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1489-1499, June.
    5. Fu, Shu & Huang, Yu & Feng, Tao & Nian, Da & Fu, Zuntao, 2019. "Regional contrasting DTR’s predictability over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 282-292.
    6. da Silva, A.J. & Floquet, S. & Santos, D.O.C. & Lima, R.F., 2020. "On the validation of the Newcomb−Benford Law and the Weibull distribution in neuromuscular transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moolenaar, Hanneke E. & Grasman, Johan & Selten, Frank M. & de Gee, Maarten, 2007. "Testing a method for analyzing the effect of parameter change in climate driven ecological systems," Ecological Modelling, Elsevier, vol. 205(3), pages 289-300.
    2. Manuel Mendoza-Carranza & Elisabet Ejarque & Leopold A J Nagelkerke, 2018. "Disentangling the complexity of tropical small-scale fisheries dynamics using supervised Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    3. Grasman, Johan & van Nes, Egbert H. & Kersting, Kees, 2009. "Data-directed modelling of Daphnia dynamics in a long-term micro-ecosystem experiment," Ecological Modelling, Elsevier, vol. 220(3), pages 343-350.
    4. Michael J Malick & Sean P Cox, 2016. "Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-23, January.
    5. Subbiah, Mohan & Fabozzi, Frank J., 2016. "Hedge fund allocation: Evaluating parametric and nonparametric forecasts using alternative portfolio construction techniques," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 189-201.
    6. Dost, Florian, 2015. "A non-linear causal network of marketing channel system structure," Journal of Retailing and Consumer Services, Elsevier, vol. 23(C), pages 49-57.
    7. Laura S Storch & Sarah M Glaser & Hao Ye & Andrew A Rosenberg, 2017. "Stock assessment and end-to-end ecosystem models alter dynamics of fisheries data," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-11, February.
    8. Alexander Maye & Chih-hao Hsieh & George Sugihara & Björn Brembs, 2007. "Order in Spontaneous Behavior," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    9. De La Fuente, G. & Asnaghi, V. & Chiantore, M. & Thrush, S. & Povero, P. & Vassallo, P. & Petrillo, M. & Paoli, C., 2019. "The effect of Cystoseira canopy on the value of midlittoral habitats in NW Mediterranean, an emergy assessment," Ecological Modelling, Elsevier, vol. 404(C), pages 1-11.
    10. Ewa Merz & Erik Saberski & Luis J. Gilarranz & Peter D. F. Isles & George Sugihara & Christine Berger & Francesco Pomati, 2023. "Disruption of ecological networks in lakes by climate change and nutrient fluctuations," Nature Climate Change, Nature, vol. 13(4), pages 389-396, April.
    11. Megrey, Bernard A. & Rose, Kenneth A. & Ito, Shin-ichi & Hay, Douglas E. & Werner, Francisco E. & Yamanaka, Yasuhiro & Aita, Maki Noguchi, 2007. "North Pacific basin-scale differences in lower and higher trophic level marine ecosystem responses to climate impacts using a nutrient-phytoplankton–zooplankton model coupled to a fish bioenergetics m," Ecological Modelling, Elsevier, vol. 202(1), pages 196-210.
    12. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    13. Yun Jian & Sonia Silvestri & Jeff Brown & Rick Hickman & Marco Marani, 2014. "The Temporal Spectrum of Adult Mosquito Population Fluctuations: Conceptual and Modeling Implications," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    14. Franz Hamilton & Alun L Lloyd & Kevin B Flores, 2017. "Hybrid modeling and prediction of dynamical systems," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-20, July.
    15. Mario Sprovieri & Maurizio Ribera d’Alcalà & Patrick Roose & Aldo Drago & Karien De Cauwer & Federico Falcini & Inga Lips & Chiara Maggi & Aourell Mauffret & Jacek Tronczynski & Christina Zeri & Pier , 2021. "Science for Good Environmental Status: A European Joint Action to Support Marine Policy," Sustainability, MDPI, vol. 13(15), pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0129161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.