IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0128334.html
   My bibliography  Save this article

DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

Author

Listed:
  • Zhiheng Wang
  • Qianqian Yang
  • Tonghua Li
  • Peisheng Cong

Abstract

Availability: The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

Suggested Citation

  • Zhiheng Wang & Qianqian Yang & Tonghua Li & Peisheng Cong, 2015. "DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0128334
    DOI: 10.1371/journal.pone.0128334
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128334
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0128334&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0128334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avner Schlessinger & Marco Punta & Guy Yachdav & Laszlo Kajan & Burkhard Rost, 2009. "Improved Disorder Prediction by Combination of Orthogonal Approaches," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-10, February.
    2. Julien Becker & Francis Maes & Louis Wehenkel, 2013. "On the Encoding of Proteins for Disordered Regions Prediction," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmeralda Vicedo & Avner Schlessinger & Burkhard Rost, 2015. "Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    2. Jiangning Song & Hao Tan & Mingjun Wang & Geoffrey I Webb & Tatsuya Akutsu, 2012. "TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-16, February.
    3. Pahalage Dhanushka Sandaruwan & Champi Thusangi Wannige, 2021. "An improved deep learning model for hierarchical classification of protein families," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0128334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.